Gravitational scattering of electromagnetic field by Schwarzschild black-hole

A. Bachelot

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 54, Issue: 3, page 261-320
  • ISSN: 0246-0211

How to cite


Bachelot, A.. "Gravitational scattering of electromagnetic field by Schwarzschild black-hole." Annales de l'I.H.P. Physique théorique 54.3 (1991): 261-320. <>.

author = {Bachelot, A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {electromagnetic scattering; black-hole; Schwarzschild spacetime; Kruskal universe; scattering operator; Membrane Paradigm},
language = {eng},
number = {3},
pages = {261-320},
publisher = {Gauthier-Villars},
title = {Gravitational scattering of electromagnetic field by Schwarzschild black-hole},
url = {},
volume = {54},
year = {1991},

AU - Bachelot, A.
TI - Gravitational scattering of electromagnetic field by Schwarzschild black-hole
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 3
SP - 261
EP - 320
LA - eng
KW - electromagnetic scattering; black-hole; Schwarzschild spacetime; Kruskal universe; scattering operator; Membrane Paradigm
UR -
ER -


  1. [1] A. Bachelot, Scattering of Electromagnetic Field by De Sitter-Schwarzschild BlackHole, to appear in "Non linear Hyperbolic Equations and Field Theory", Research Notes Math., Pitman. Zbl0823.35162
  2. [2] A. Bayliss and E. Turkel, Radiation Boundary Conditions for Wave Like Equations, C.P.A.M., Vol. 33, 1980, pp. 629-651. Zbl0438.35043MR596431
  3. [3] S. Chandrasekar, The Mathematical Theory of Black-Holes, Oxford University Press, New York, 1983. Zbl0511.53076MR700826
  4. [4] T. Damour, Black-Hole Eddy Currents, Phys. Rev. D., Vol. 18, 10, 1978, pp. 3598- 3604. 
  5. [5] T. Damour, Thèse de Doctorat d'État, Université Pierre-et-Marie-Curie, Paris, 1979. 
  6. [6] T. Damour, Proceedings of the Second Marcel Grossman Meeting on General Relativity, Ruffini Ed., North-Holland, Amsterdam, 1982. MR678971
  7. [7] J. Dimock, Scattering for the Wave Equation on the Schwarzschild Metric, Gen. Rel. Grav., Vol. 17, 4, 1985, pp. 353-369. Zbl0618.35088MR788801
  8. [8] J. Dimock and B.S. Kay, Scattering for Massive Scalar Fields on Coulomb Potentials and Schwarzschild Metrics, Class. Quantum Grav., Vol. 3, 1986, pp. 71-80. Zbl0659.53054MR821837
  9. [9] J. Dimock, B.S. Kay, Classical and Quantum scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Phys., Vol. 175, 1987, pp. 366-426. Zbl0628.53080MR887979
  10. [10] J.A.H. Futterman, F.A. Hawdler and R.A. Matznzer, Scattering from Black-Holes, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1987. MR1012319
  11. [11] J.M. Gel'fand and Z.Y. Sapiro, Representation of the Group of Solutions of 3- Dimensional Space and their Applications, A.M.S. Transl., Vol. 2, 1956, pp. 207-316. Zbl0070.25902MR76290
  12. [12] B. Hanouzet and M. Sesquès, Influence des termes de courbure dans les conditions aux limites artificielles pour les équations de Maxwell, C. R. Acad. Sci. Paris, t. 311, série I, 1990, pp. 561-564. Zbl0717.35090MR1078123
  13. [13] S.W. Hawking and F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, 1973. Zbl0265.53054MR424186
  14. [14] D.A. Mac Donald, R.H. Price and K.S. Thorne, Black-Holes: the Membrane Paradigm, Yale University Press, New-Haven, London, 1986. MR912528
  15. [15] D.A. Mac Donald and W.M. Suen, Membrane Viewpoint on Black-Hole: Dynamical Electromagnetic Fields Near the Horizon, Phys. Rev. D, Vol. 32, 4, 1985, pp. 848-871. MR803857
  16. [16] D.A. Mac Donald and K.S. Thorne, Black-Hole Electrodynamics: an Absolute Space Universal Time Formulation, Mon. Not. R. Astron. Soc., Vol. 198, 1982, pp. 345- 382. Zbl0491.70013MR643444
  17. [17] D.A. Mac Donald and K.S. Thorne, Electrodynamics in Curved Space-Time: 3 + 1 Formulation, Mon. Not. R. Soc., Vol. 198, 1982, pp. 339-343 and Microfiche MN 198/1. Zbl0486.70001
  18. [18] G.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W. H. Freeman and Co., New York, 1973. MR418833
  19. [19] I.D. Novikov and V.P. Frolov, Physics of Black-Holes, Kluwer Academic Publishers, Dorchecht, 1989. Zbl0688.53034MR1032763
  20. [20] V. Petkov, Scattering Theory for Hyperbolic Systems, North-Holland, 1989. 
  21. [21] J. Porrill and J.M. Stewart, Electromagnetic and Gravitational Fields in a Schwarzschild Space-Time, Proc. R. Soc. Lond., Vol. A 376, 1981, pp. 451-463. MR623584
  22. [22] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. II, IV, 1975, 1978, Academic Press. Zbl0308.47002
  23. [23] B.G. Schmidt and J.M. Stewart, The Scalar Wave Equation in a Schwarzschild Space-Time, Proc. R. Soc. Lond., Vol. A 367, 1979, pp. 503-525. Zbl0425.35064MR547955
  24. [24] R.L. Znajeck, The Electric and Magnetic Conductivity of Kerr-Hole, Mon. Not. R. Astron. Soc., Vol. 185, 1978, pp. 833-840. 

Citations in EuDML Documents

  1. Alain Bachelot, Agnès Motet-Bachelot, Les résonances d'un trou noir de Schwarzschild
  2. Alain Bachelot, Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric
  3. Peter Hintz, András Vasy, Quasilinear waves and trapping: Kerr-de Sitter space
  4. A. Bachelot, La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances
  5. J.-P. Nicolas, Scattering of linear Dirac fields by a spherically symmetric Black-Hole
  6. A. Bachelot, Diffusion classique et quantique par un trou noir en formation
  7. Bernard Kay, Application of linear hyperbolic PDE to linear quantum fields in curved spacetimes : especially black holes, time machines and a new semi-local vacuum concept
  8. Alain Bachelot, L’effet Hawking
  9. Alain Bachelot, The Hawking effect
  10. Dietrich Häfner, Jean-Philippe Nicolas, Théorie de la diffusion pour l’équation de Dirac sans masse dans la métrique de Kerr

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.