Examples of polynomial identities distinguishing the Galois objects over finite-dimensional Hopf algebras
- [1] Institut de Recherche Mathématique Avancée, CNRS & Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg, France
Annales mathématiques Blaise Pascal (2013)
- Volume: 20, Issue: 2, page 175-191
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topKassel, Christian. "Examples of polynomial identities distinguishing the Galois objects over finite-dimensional Hopf algebras." Annales mathématiques Blaise Pascal 20.2 (2013): 175-191. <http://eudml.org/doc/275545>.
@article{Kassel2013,
abstract = {We define polynomial $H$-identities for comodule algebras over a Hopf algebra $H$ and establish general properties for the corresponding $T$-ideals. In the case $H$ is a Taft algebra or the Hopf algebra $E(n)$, we exhibit a finite set of polynomial $H$-identities which distinguish the Galois objects over $H$ up to isomorphism.},
affiliation = {Institut de Recherche Mathématique Avancée, CNRS & Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg, France},
author = {Kassel, Christian},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Hopf algebra; comodule algebra; polynomial identity; Hopf algebras; comodule algebras; polynomial identities; T-ideals; Galois objects; Taft algebras; algebras of non-commutative polynomials; tensor algebras},
language = {eng},
month = {7},
number = {2},
pages = {175-191},
publisher = {Annales mathématiques Blaise Pascal},
title = {Examples of polynomial identities distinguishing the Galois objects over finite-dimensional Hopf algebras},
url = {http://eudml.org/doc/275545},
volume = {20},
year = {2013},
}
TY - JOUR
AU - Kassel, Christian
TI - Examples of polynomial identities distinguishing the Galois objects over finite-dimensional Hopf algebras
JO - Annales mathématiques Blaise Pascal
DA - 2013/7//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 2
SP - 175
EP - 191
AB - We define polynomial $H$-identities for comodule algebras over a Hopf algebra $H$ and establish general properties for the corresponding $T$-ideals. In the case $H$ is a Taft algebra or the Hopf algebra $E(n)$, we exhibit a finite set of polynomial $H$-identities which distinguish the Galois objects over $H$ up to isomorphism.
LA - eng
KW - Hopf algebra; comodule algebra; polynomial identity; Hopf algebras; comodule algebras; polynomial identities; T-ideals; Galois objects; Taft algebras; algebras of non-commutative polynomials; tensor algebras
UR - http://eudml.org/doc/275545
ER -
References
top- E. Aljadeff, D. Haile, Simple -graded algebras and their polynomial identities, Trans. Amer. Math. Soc., to appear Zbl1297.16019
- E. Aljadeff, D. Haile, M. Natapov, Graded identities of matrix algebras and the universal graded algebra, Trans. Amer. Math. Soc. 362 (2010), 3125-3147 Zbl1203.16020MR2592949
- E. Aljadeff, C. Kassel, Polynomial identities and noncommutative versal torsors, Adv. Math. 218 (2008), 1453-1495 Zbl1152.16026MR2419929
- A. S. Amitsur, J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449-463 Zbl0040.01101MR36751
- Y. A. Bahturin, V. Linchenko, Identities of algebras with actions of Hopf algebras, J. Algebra 202 (1998), 634-654 Zbl0912.16009MR1617671
- Y. A. Bahturin, M. Zaicev, Identities of graded algebras, J. Algebra 205 (1998), 1-12 Zbl0920.16011MR1631298
- M. Beattie, S. Dăscălescu, L. Grünenfelder, Constructing pointed Hopf algebras by Ore extensions, J. Algebra 225 (2000), 743-770 Zbl0948.16026MR1741560
- A. Berele, Cocharacter sequences for algebras with Hopf algebra actions, J. Algebra 185 (1996), 869-885 Zbl0864.16019MR1419727
- J. Bichon, Galois and bigalois objects over monomial non-semisimple Hopf algebras, J. Algebra Appl. 5 (2006), 653-680 Zbl1117.16025MR2269410
- J. Bichon, G. Carnovale, Lazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras, J. Pure Appl. Algebra 204 (2006), 627-665 Zbl1084.16028MR2185622
- X.-W. Chen, H.-L. Huang, Y. Ye, P. Zhang, Monomial Hopf algebras, J. Algebra 275 (2004), 212-232 Zbl1071.16030MR2047446
- Y. Doi, M. Takeuchi, Quaternion algebras and Hopf crossed products, Comm. Algebra 23 (1995), 3291-3325 Zbl0833.16036MR1335303
- P. Koshlukov, M. Zaicev, Identities and isomorphisms of graded simple algebras, Linear Algebra Appl. 432 (2010), 3141-3148 Zbl1194.16016MR2639274
- A. Masuoka, Cleft extensions for a Hopf algebra generated by a nearly primitive element, Comm. Algebra 22 (1994), 4537-4559 Zbl0809.16046MR1284344
- S. Montgomery, Hopf algebras and their actions on rings, (1993), Amer. Math. Soc., Providence Zbl0793.16029MR1243637
- A. Nenciu, Cleft extensions for a class of pointed Hopf algebras constructed by Ore extensions, Comm. Algebra 29 (2001), 1959-1981 Zbl0991.16034MR1837954
- F. Panaite, F. van Oystaeyen, Quasitriangular structures for some pointed Hopf algebras of dimension , Comm. Algebra 27 (1999), 4929-4942 Zbl0943.16019MR1701714
- L. Rowen, Polynomial identities in ring theory, (1980), Academic Press, Inc., New York–London Zbl0461.16001MR576061
- M. Sweedler, Hopf algebras, (1969), W. A. Benjamin, Inc., New York Zbl0194.32901MR252485
- E. J. Taft, The order of the antipode of finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2631-2633 Zbl0222.16012MR286868
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.