Displaying similar documents to “Examples of polynomial identities distinguishing the Galois objects over finite-dimensional Hopf algebras”

The bicrossed products of H 4 and H 8

Daowei Lu, Yan Ning, Dingguo Wang (2020)

Czechoslovak Mathematical Journal

Similarity:

Let H 4 and H 8 be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through H 8 and H 4 (equivalently, any bicrossed product between the Hopf algebras H 8 and H 4 ) must be isomorphic to one of the following four Hopf algebras: H 8 H 4 , H 32 , 1 , H 32 , 2 , H 32 , 3 . The set of all matched pairs ( H 8 , H 4 , , ) is explicitly described, and then the associated bicrossed product is given by generators and relations.

The structures of Hopf * -algebra on Radford algebras

Hassan Suleman Esmael Mohammed, Hui-Xiang Chen (2019)

Czechoslovak Mathematical Journal

Similarity:

We investigate the structures of Hopf * -algebra on the Radford algebras over . All the * -structures on H are explicitly given. Moreover, these Hopf * -algebra structures are classified up to equivalence.

Singularity categories of skewed-gentle algebras

Xinhong Chen, Ming Lu (2015)

Colloquium Mathematicae

Similarity:

Let K be an algebraically closed field. Let (Q,Sp,I) be a skewed-gentle triple, and let ( Q s g , I s g ) and ( Q g , I g ) be the corresponding skewed-gentle pair and the associated gentle pair, respectively. We prove that the skewed-gentle algebra K Q s g / I s g is singularity equivalent to KQ/⟨I⟩. Moreover, we use (Q,Sp,I) to describe the singularity category of K Q g / I g . As a corollary, we find that g l d i m K Q s g / I s g < if and only if g l d i m K Q / I < if and only if g l d i m K Q g / I g < .

Transfer of derived equivalences from subalgebras to endomorphism algebras II

Shengyong Pan, Jiahui Yu (2024)

Czechoslovak Mathematical Journal

Similarity:

We investigate derived equivalences between subalgebras of some Φ -Auslander-Yoneda algebras from a class of n -angles in weakly n -angulated categories. The derived equivalences are obtained by transferring subalgebras induced by n -angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to n -angle cases. Finally, we give an explicit example to illustrate our result.

Matrix representation of finite effect algebras

Grzegorz Bińczak, Joanna Kaleta, Andrzej Zembrzuski (2023)

Kybernetika

Similarity:

In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra E we construct set of matrices M ( E ) in such a way that effect algebras E 1 and E 2 are isomorphic if and only if M ( E 1 ) = M ( E 2 ) . The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most 8 .

A representation theorem for tense n × m -valued Łukasiewicz-Moisil algebras

Aldo Victorio Figallo, Gustavo Pelaitay (2015)

Mathematica Bohemica

Similarity:

In 2000, Figallo and Sanza introduced n × m -valued Łukasiewicz-Moisil algebras which are both particular cases of matrix Łukasiewicz algebras and a generalization of n -valued Łukasiewicz-Moisil algebras. Here we initiate an investigation into the class n × m of tense n × m -valued Łukasiewicz-Moisil algebras (or tense LM n × m -algebras), namely n × m -valued Łukasiewicz-Moisil algebras endowed with two unary operations called tense operators. These algebras constitute a generalization of tense...

Piecewise hereditary algebras under field extensions

Jie Li (2021)

Czechoslovak Mathematical Journal

Similarity:

Let A be a finite-dimensional k -algebra and K / k be a finite separable field extension. We prove that A is derived equivalent to a hereditary algebra if and only if so is A k K .

Weak polynomial identities and their applications

Vesselin Drensky (2021)

Communications in Mathematics

Similarity:

Let R be an associative algebra over a field K generated by a vector subspace V . The polynomial f ( x 1 , ... , x n ) of the free associative algebra K x 1 , x 2 , ... is a weak polynomial identity for the pair ( R , V ) if it vanishes in R when evaluated on V . We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of...

Quantised 𝔰𝔩 2 -differential algebras

Andrey Krutov, Pavle Pandžić (2024)

Archivum Mathematicum

Similarity:

We propose a definition of a quantised 𝔰𝔩 2 -differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of  𝔰𝔩 2 are natural examples of such algebras.

The duality theorem for twisted smash products of Hopf algebras and its applications

Zhongwei Wang, Liangyun Zhang (2015)

Colloquium Mathematicae

Similarity:

Let A T H denote the twisted smash product of an arbitrary algebra A and a Hopf algebra H over a field. We present an analogue of the celebrated Blattner-Montgomery duality theorem for A T H , and as an application we establish the relationship between the homological dimensions of A T H and A if H and its dual H* are both semisimple.

The moduli space of commutative algebras of finite rank

Bjorn Poonen (2008)

Journal of the European Mathematical Society

Similarity:

The moduli space of rank- n commutative algebras equipped with an ordered basis is an affine scheme 𝔅 n of finite type over , with geometrically connected fibers. It is smooth if and only if n 3 . It is reducible if n 8 (and the converse holds, at least if we remove the fibers above 2 and 3 ). The relative dimension of 𝔅 n is 2 27 n 3 + O ( n 8 / 3 ) . The subscheme parameterizing étale algebras is isomorphic to GL n / S n , which is of dimension only n 2 . For n 8 , there exist algebras that are not limits of étale algebras. The dimension...

Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions

Murray R. Bremner, Sara Madariaga, Luiz A. Peresi (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra 𝔽 S n of the symmetric group S n over a field 𝔽 of characteristic 0 (or p > n ). The goal is to obtain a constructive version of the isomorphism ψ : λ M d λ ( 𝔽 ) 𝔽 S n where λ is a partition of n and d λ counts the standard tableaux...