Vector fields, separatrices and Kato surfaces
- [1] Instituto de Matemáticas, Unidad Cuernavaca Universidad Nacional Autónoma de México A.P. 273-3 Admon. 3 Cuernavaca, Morelos, 62251 Mexico
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 3, page 1331-1361
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGuillot, Adolfo. "Vector fields, separatrices and Kato surfaces." Annales de l’institut Fourier 64.3 (2014): 1331-1361. <http://eudml.org/doc/275572>.
@article{Guillot2014,
abstract = {We prove that a singular complex surface that admits a complete holomorphic vector field that has no invariant curve through a singular point of the surface is obtained from a Kato surface by contracting some divisor (in particular, it is compact). We also prove that, in a singular Stein surface endowed with a complete holomorphic vector field, a singular point of the surface where the zeros of the vector field do not accumulate is either a quasihomogeneous or a cyclic quotient singularity. We give new proofs of some results concerning the classification of compact complex surfaces admitting holomorphic vector fields. Our proofs rely in a combinatorial description of the vector field on a resolution of the singular point based on previous work of Rebelo and the author.},
affiliation = {Instituto de Matemáticas, Unidad Cuernavaca Universidad Nacional Autónoma de México A.P. 273-3 Admon. 3 Cuernavaca, Morelos, 62251 Mexico},
author = {Guillot, Adolfo},
journal = {Annales de l’institut Fourier},
keywords = {semicompleteness; separatrix; vector field; Kato surface; Stein surface; separatrix, holomorphic vector fields; Kato surfaces; Stein surfaces},
language = {eng},
number = {3},
pages = {1331-1361},
publisher = {Association des Annales de l’institut Fourier},
title = {Vector fields, separatrices and Kato surfaces},
url = {http://eudml.org/doc/275572},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Guillot, Adolfo
TI - Vector fields, separatrices and Kato surfaces
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1331
EP - 1361
AB - We prove that a singular complex surface that admits a complete holomorphic vector field that has no invariant curve through a singular point of the surface is obtained from a Kato surface by contracting some divisor (in particular, it is compact). We also prove that, in a singular Stein surface endowed with a complete holomorphic vector field, a singular point of the surface where the zeros of the vector field do not accumulate is either a quasihomogeneous or a cyclic quotient singularity. We give new proofs of some results concerning the classification of compact complex surfaces admitting holomorphic vector fields. Our proofs rely in a combinatorial description of the vector field on a resolution of the singular point based on previous work of Rebelo and the author.
LA - eng
KW - semicompleteness; separatrix; vector field; Kato surface; Stein surface; separatrix, holomorphic vector fields; Kato surfaces; Stein surfaces
UR - http://eudml.org/doc/275572
ER -
References
top- W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, 4 (1984), Springer-Verlag, Berlin Zbl1036.14016MR749574
- Romain Bondil, Dũng Tráng Lê, Résolution des singularités de surfaces par éclatements normalisés (multiplicité, multiplicité polaire, et singularités minimales), Trends in singularities (2002), 31-81, Birkhäuser, Basel Zbl1058.14023
- Briot, Bouquet, Recherches sur les propriétés des fonctions définies par des équations différentielles, Comptes rendus hebdomadaires des scéances de l’Académie des Sciences 39 (1854), 368-371
- Marco Brunella, Birational geometry of foliations, (2004), IMPA, Rio de Janeiro Zbl1073.14022MR2114696
- Marco Brunella, Nonuniformisable foliations on compact complex surfaces, Mosc. Math. J. 9 (2009), 729-748, 934 Zbl1194.32008MR2657280
- C. Camacho, H. Movasati, B. Scárdua, The moduli of quasi-homogeneous Stein surface singularities, J. Geom. Anal. 19 (2009), 244-260 Zbl1186.32007MR2481961
- César Camacho, Quadratic forms and holomorphic foliations on singular surfaces, Math. Ann. 282 (1988), 177-184 Zbl0657.32007MR963011
- César Camacho, Paulo Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595 Zbl0503.32007MR657239
- César Camacho, Paulo Sad, Pontos singulares de equações diferenciais analí ticas, (1987), Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro
- G. Dloussky, K. Oeljeklaus, Vector fields and foliations on compact surfaces of class , Ann. Inst. Fourier (Grenoble) 49 (1999), 1503-1545 Zbl0978.32021MR1723825
- Georges Dloussky, Structure des surfaces de Kato, Mém. Soc. Math. France (1984) Zbl0543.32012MR763959
- Georges Dloussky, Karl Oeljeklaus, Matei Toma, Surfaces de la classe VII admettant un champ de vecteurs, Comment. Math. Helv. 75 (2000), 255-270 Zbl0984.32009MR1774705
- Georges Dloussky, Karl Oeljeklaus, Matei Toma, Surfaces de la classe VII admettant un champ de vecteurs. II, Comment. Math. Helv. 76 (2001), 640-664 Zbl1011.32014MR1881701
- Charles Favre, Classification of 2-dimensional contracting rigid germs and Kato surfaces. I, J. Math. Pures Appl. 79 (2000), 475-514 Zbl0983.32023MR1759437
- E. Ghys, J.-C. Rebelo, Singularités des flots holomorphes. II, Ann. Inst. Fourier (Grenoble) 47 (1997), 1117-1174 Zbl0938.32019MR1488247
- Étienne Ghys, À propos d’un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes, Rend. Circ. Mat. Palermo (2) 49 (2000), 175-180 Zbl0953.32016MR1753461
- Adolfo Guillot, Julio Rebelo, Semicomplete meromorphic vector fields on complex surfaces, J. Reine Angew. Math. 667 (2012), 27-65 Zbl1250.32023MR2929671
- Masahide Kato, Compact complex manifolds containing “global” spherical shells, Proc. Japan Acad. 53 (1977), 15-16 Zbl0379.32023MR440076
- Peter Orlik, Philip Wagreich, Isolated singularities of algebraic surfaces with C action, Ann. of Math. 93 (1971), 205-228 Zbl0212.53702MR284435
- Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957) Zbl0178.26502MR121424
- Julio C. Rebelo, Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble) 46 (1996), 411-428 Zbl0853.34002MR1393520
- Julio C. Rebelo, Champs complets avec singularités non isolées sur les surfaces complexes, Bol. Soc. Mat. Mexicana (3) 5 (1999), 359-395 Zbl0948.34067MR1738417
- Julio C. Rebelo, Réalisation de germes de feuilletages holomorphes par des champs semi-complets en dimension 2, Ann. Fac. Sci. Toulouse Math. 9 (2000), 735-763 Zbl1002.32025MR1838147
- Hugo Rossi, Vector Fields on Analytic Spaces, Ann. of Math. (2) 78 (1963), 455-467 Zbl0129.29701MR162973
- Federico Sánchez-Bringas, Normal forms of invariant vector fields under a finite group action, Publ. Mat. 37 (1993), 75-82 Zbl0872.58057MR1240923
- A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167-173 Zbl0133.29202MR188247
- Oscar Zariski, The reduction of the singularities of an algebraic surface, Ann. of Math. (2) 40 (1939), 639-689 Zbl0021.25303MR159
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.