Vector fields, separatrices and Kato surfaces

Adolfo Guillot[1]

  • [1] Instituto de Matemáticas, Unidad Cuernavaca Universidad Nacional Autónoma de México A.P. 273-3 Admon. 3 Cuernavaca, Morelos, 62251 Mexico

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 3, page 1331-1361
  • ISSN: 0373-0956

Abstract

top
We prove that a singular complex surface that admits a complete holomorphic vector field that has no invariant curve through a singular point of the surface is obtained from a Kato surface by contracting some divisor (in particular, it is compact). We also prove that, in a singular Stein surface endowed with a complete holomorphic vector field, a singular point of the surface where the zeros of the vector field do not accumulate is either a quasihomogeneous or a cyclic quotient singularity. We give new proofs of some results concerning the classification of compact complex surfaces admitting holomorphic vector fields. Our proofs rely in a combinatorial description of the vector field on a resolution of the singular point based on previous work of Rebelo and the author.

How to cite

top

Guillot, Adolfo. "Vector fields, separatrices and Kato surfaces." Annales de l’institut Fourier 64.3 (2014): 1331-1361. <http://eudml.org/doc/275572>.

@article{Guillot2014,
abstract = {We prove that a singular complex surface that admits a complete holomorphic vector field that has no invariant curve through a singular point of the surface is obtained from a Kato surface by contracting some divisor (in particular, it is compact). We also prove that, in a singular Stein surface endowed with a complete holomorphic vector field, a singular point of the surface where the zeros of the vector field do not accumulate is either a quasihomogeneous or a cyclic quotient singularity. We give new proofs of some results concerning the classification of compact complex surfaces admitting holomorphic vector fields. Our proofs rely in a combinatorial description of the vector field on a resolution of the singular point based on previous work of Rebelo and the author.},
affiliation = {Instituto de Matemáticas, Unidad Cuernavaca Universidad Nacional Autónoma de México A.P. 273-3 Admon. 3 Cuernavaca, Morelos, 62251 Mexico},
author = {Guillot, Adolfo},
journal = {Annales de l’institut Fourier},
keywords = {semicompleteness; separatrix; vector field; Kato surface; Stein surface; separatrix, holomorphic vector fields; Kato surfaces; Stein surfaces},
language = {eng},
number = {3},
pages = {1331-1361},
publisher = {Association des Annales de l’institut Fourier},
title = {Vector fields, separatrices and Kato surfaces},
url = {http://eudml.org/doc/275572},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Guillot, Adolfo
TI - Vector fields, separatrices and Kato surfaces
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1331
EP - 1361
AB - We prove that a singular complex surface that admits a complete holomorphic vector field that has no invariant curve through a singular point of the surface is obtained from a Kato surface by contracting some divisor (in particular, it is compact). We also prove that, in a singular Stein surface endowed with a complete holomorphic vector field, a singular point of the surface where the zeros of the vector field do not accumulate is either a quasihomogeneous or a cyclic quotient singularity. We give new proofs of some results concerning the classification of compact complex surfaces admitting holomorphic vector fields. Our proofs rely in a combinatorial description of the vector field on a resolution of the singular point based on previous work of Rebelo and the author.
LA - eng
KW - semicompleteness; separatrix; vector field; Kato surface; Stein surface; separatrix, holomorphic vector fields; Kato surfaces; Stein surfaces
UR - http://eudml.org/doc/275572
ER -

References

top
  1. W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, 4 (1984), Springer-Verlag, Berlin Zbl1036.14016MR749574
  2. Romain Bondil, Dũng Tráng Lê, Résolution des singularités de surfaces par éclatements normalisés (multiplicité, multiplicité polaire, et singularités minimales), Trends in singularities (2002), 31-81, Birkhäuser, Basel Zbl1058.14023
  3. Briot, Bouquet, Recherches sur les propriétés des fonctions définies par des équations différentielles, Comptes rendus hebdomadaires des scéances de l’Académie des Sciences 39 (1854), 368-371 
  4. Marco Brunella, Birational geometry of foliations, (2004), IMPA, Rio de Janeiro Zbl1073.14022MR2114696
  5. Marco Brunella, Nonuniformisable foliations on compact complex surfaces, Mosc. Math. J. 9 (2009), 729-748, 934 Zbl1194.32008MR2657280
  6. C. Camacho, H. Movasati, B. Scárdua, The moduli of quasi-homogeneous Stein surface singularities, J. Geom. Anal. 19 (2009), 244-260 Zbl1186.32007MR2481961
  7. César Camacho, Quadratic forms and holomorphic foliations on singular surfaces, Math. Ann. 282 (1988), 177-184 Zbl0657.32007MR963011
  8. César Camacho, Paulo Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595 Zbl0503.32007MR657239
  9. César Camacho, Paulo Sad, Pontos singulares de equações diferenciais analí ticas, (1987), Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro 
  10. G. Dloussky, K. Oeljeklaus, Vector fields and foliations on compact surfaces of class VII 0 , Ann. Inst. Fourier (Grenoble) 49 (1999), 1503-1545 Zbl0978.32021MR1723825
  11. Georges Dloussky, Structure des surfaces de Kato, Mém. Soc. Math. France (1984) Zbl0543.32012MR763959
  12. Georges Dloussky, Karl Oeljeklaus, Matei Toma, Surfaces de la classe VII 0 admettant un champ de vecteurs, Comment. Math. Helv. 75 (2000), 255-270 Zbl0984.32009MR1774705
  13. Georges Dloussky, Karl Oeljeklaus, Matei Toma, Surfaces de la classe VII 0 admettant un champ de vecteurs. II, Comment. Math. Helv. 76 (2001), 640-664 Zbl1011.32014MR1881701
  14. Charles Favre, Classification of 2-dimensional contracting rigid germs and Kato surfaces. I, J. Math. Pures Appl. 79 (2000), 475-514 Zbl0983.32023MR1759437
  15. E. Ghys, J.-C. Rebelo, Singularités des flots holomorphes. II, Ann. Inst. Fourier (Grenoble) 47 (1997), 1117-1174 Zbl0938.32019MR1488247
  16. Étienne Ghys, À propos d’un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes, Rend. Circ. Mat. Palermo (2) 49 (2000), 175-180 Zbl0953.32016MR1753461
  17. Adolfo Guillot, Julio Rebelo, Semicomplete meromorphic vector fields on complex surfaces, J. Reine Angew. Math. 667 (2012), 27-65 Zbl1250.32023MR2929671
  18. Masahide Kato, Compact complex manifolds containing “global” spherical shells, Proc. Japan Acad. 53 (1977), 15-16 Zbl0379.32023MR440076
  19. Peter Orlik, Philip Wagreich, Isolated singularities of algebraic surfaces with C * action, Ann. of Math. 93 (1971), 205-228 Zbl0212.53702MR284435
  20. Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957) Zbl0178.26502MR121424
  21. Julio C. Rebelo, Singularités des flots holomorphes, Ann. Inst. Fourier (Grenoble) 46 (1996), 411-428 Zbl0853.34002MR1393520
  22. Julio C. Rebelo, Champs complets avec singularités non isolées sur les surfaces complexes, Bol. Soc. Mat. Mexicana (3) 5 (1999), 359-395 Zbl0948.34067MR1738417
  23. Julio C. Rebelo, Réalisation de germes de feuilletages holomorphes par des champs semi-complets en dimension 2, Ann. Fac. Sci. Toulouse Math. 9 (2000), 735-763 Zbl1002.32025MR1838147
  24. Hugo Rossi, Vector Fields on Analytic Spaces, Ann. of Math. (2) 78 (1963), 455-467 Zbl0129.29701MR162973
  25. Federico Sánchez-Bringas, Normal forms of invariant vector fields under a finite group action, Publ. Mat. 37 (1993), 75-82 Zbl0872.58057MR1240923
  26. A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167-173 Zbl0133.29202MR188247
  27. Oscar Zariski, The reduction of the singularities of an algebraic surface, Ann. of Math. (2) 40 (1939), 639-689 Zbl0021.25303MR159

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.