Displaying similar documents to “Syzygies and logarithmic vector fields along plane curves”

On ramified covers of the projective plane II: Generalizing Segre’s theory

Michael Friedman, Rebecca Lehman, Maxim Leyenson, Mina Teicher (2012)

Journal of the European Mathematical Society

Similarity:

The classical Segre theory gives a necessary and sufficient condition for a plane curve to be a branch curve of a (generic) projection of a smooth surface in 3 . We generalize this result for smooth surfaces in a projective space of any dimension in the following way: given two plane curves, B and E , we give a necessary and sufficient condition for B to be the branch curve of a surface X in N and E to be the image of the double curve of a 3 -model of X . In the classical Segre theory, a...

Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree

Nazar Arakelian, Herivelto Borges (2015)

Acta Arithmetica

Similarity:

For each integer s ≥ 1, we present a family of curves that are q -Frobenius nonclassical with respect to the linear system of plane curves of degree s. In the case s=2, we give necessary and sufficient conditions for such curves to be q -Frobenius nonclassical with respect to the linear system of conics. In the q -Frobenius nonclassical cases, we determine the exact number of q -rational points. In the remaining cases, an upper bound for the number of q -rational points will follow from Stöhr-Voloch...

Semistability of Frobenius direct images over curves

Vikram B. Mehta, Christian Pauly (2007)

Bulletin de la Société Mathématique de France

Similarity:

Let X be a smooth projective curve of genus g 2 defined over an algebraically closed field k of characteristic p > 0 . Given a semistable vector bundle  E over X , we show that its direct image F * E under the Frobenius map F of X is again semistable. We deduce a numerical characterization of the stable rank- p vector bundles  F * L , where L is a line bundle over X .

A curve of genus q with a Half-Canonical embedding in 𝐏 3

Sevin Recillas (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Si costruiscono curve di genere g = 4 n 3 , n 3 che hanno 2 n - 3 ( 2 n - 2 - 1 ) fasci semicanonici L tali che h 0 ( L ) = 4 . Per n + 3 si dimostra che gli L sono molto ampi.

An a b c d theorem over function fields and applications

Pietro Corvaja, Umberto Zannier (2011)

Bulletin de la Société Mathématique de France

Similarity:

We provide a lower bound for the number of distinct zeros of a sum 1 + u + v for two rational functions u , v , in term of the degree of u , v , which is sharp whenever u , v have few distinct zeros and poles compared to their degree. This sharpens the “ a b c d -theorem” of Brownawell-Masser and Voloch in some cases which are sufficient to obtain new finiteness results on diophantine equations over function fields. For instance, we show that the Fermat-type surface x a + y a + z c = 1 contains only finitely many rational or elliptic...

On the birational gonalities of smooth curves

E. Ballico (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let C be a smooth curve of genus g . For each positive integer r the birational r -gonality s r ( C ) of C is the minimal integer t such that there is L Pic t ( C ) with h 0 ( C , L ) = r + 1 . Fix an integer r 3 . In this paper we prove the existence of an integer g r such that for every integer g g r there is a smooth curve C of genus g with s r + 1 ( C ) / ( r + 1 ) > s r ( C ) / r , i.e. in the sequence of all birational gonalities of C at least one of the slope inequalities fails.

Self-intersection of the relative dualizing sheaf on modular curves X 1 ( N )

Hartwig Mayer (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let N be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than 4 . Our main theorem is an asymptotic formula solely in terms of N for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves X 1 ( N ) / . From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian J 1 ( N ) / of X 1 ( N ) / , and, for sufficiently large N , an effective version of Bogomolov’s conjecture for X 1 ( N ) / . ...

Singularities of 2 Θ -divisors in the jacobian

Christian Pauly, Emma Previato (2001)

Bulletin de la Société Mathématique de France

Similarity:

We consider the linear system | 2 Θ 0 | of second order theta functions over the Jacobian J C of a non-hyperelliptic curve C . A result by J.Fay says that a divisor D | 2 Θ 0 | contains the origin 𝒪 J C with multiplicity 4 if and only if D contains the surface C - C = { 𝒪 ( p - q ) p , q C } J C . In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing 𝒪 with multiplicity 6 , divisors containing the fourfold C 2 - C 2 = { 𝒪 ( p + q - r - s ) p , q , r , s C } , and divisors singular along C - C , using...

Brill–Noether loci for divisors on irregular varieties

Margarida Mendes Lopes, Rita Pardini, Pietro Pirola (2014)

Journal of the European Mathematical Society

Similarity:

We take up the study of the Brill-Noether loci W r ( L , X ) : = { η Pic 0 ( X ) | h 0 ( L η ) r + 1 } , where X is a smooth projective variety of dimension > 1 , L Pic ( X ) , and r 0 is an integer. By studying the infinitesimal structure of these loci and the Petri map (defined in analogy with the case of curves), we obtain lower bounds for h 0 ( K D ) , where D is a divisor that moves linearly on a smooth projective variety X of maximal Albanese dimension. In this way we sharpen the results of [Xi] and we generalize them to dimension > 2 . In the 2 -dimensional case...

The local lifting problem for actions of finite groups on curves

Ted Chinburg, Robert Guralnick, David Harbater (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let k be an algebraically closed field of characteristic p > 0 . We study obstructions to lifting to characteristic 0 the faithful continuous action φ of a finite group G on k [ [ t ] ] . To each such  φ a theorem of Katz and Gabber associates an action of G on a smooth projective curve Y over k . We say that the KGB obstruction of φ vanishes if G acts on a smooth projective curve X in characteristic  0 in such a way that X / H and Y / H have the same genus for all subgroups H G . We determine for which G the KGB...

On monogenity of certain pure number fields of degrees 2 r · 3 k · 7 s

Hamid Ben Yakkou, Jalal Didi (2024)

Mathematica Bohemica

Similarity:

Let K = ( α ) be a pure number field generated by a complex root α of a monic irreducible polynomial F ( x ) = x 2 r · 3 k · 7 s - m [ x ] , where r , k , s are three positive natural integers. The purpose of this paper is to study the monogenity of K . Our results are illustrated by some examples.

An effective proof of the hyperelliptic Shafarevich conjecture

Rafael von Känel (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let C be a hyperelliptic curve of genus g 1 over a number field K with good reduction outside a finite set of places S of K . We prove that C has a Weierstrass model over the ring of integers of K with height effectively bounded only in terms of g , S and K . In particular, we obtain that for any given number field K , finite set of places S of K and integer g 1 one can in principle determine the set of K -isomorphism classes of hyperelliptic curves over K of genus g with good reduction outside...