Local cohomology of logarithmic forms
G. Denham[1]; H. Schenck[2]; M. Schulze[3]; M. Wakefield[4]; U. Walther[5]
- [1] University of Western Ontario Department of Mathematics London, Ontario N6A 5B7 (Canada)
- [2] University of Illinois Department of Mathematics Urbana, IL 61801 (USA)
- [3] University of Kaiserslautern Department of Mathematics 67663 Kaiserslautern (Germany)
- [4] United States Naval Academy Department of Mathematics Annapolis, MD 21402 (USA)
- [5] Purdue University Department of Mathematics West Lafayette, IN 47907 (USA)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 3, page 1177-1203
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDenham, G., et al. "Local cohomology of logarithmic forms." Annales de l’institut Fourier 63.3 (2013): 1177-1203. <http://eudml.org/doc/275575>.
@article{Denham2013,
abstract = {Let $Y$ be a divisor on a smooth algebraic variety $X$. We investigate the geometry of the Jacobian scheme of $Y$, homological invariants derived from logarithmic differential forms along $Y$, and their relationship with the property that $Y$ be a free divisor. We consider arrangements of hyperplanes as a source of examples and counterexamples. In particular, we make a complete calculation of the local cohomology of logarithmic forms of generic hyperplane arrangements.},
affiliation = {University of Western Ontario Department of Mathematics London, Ontario N6A 5B7 (Canada); University of Illinois Department of Mathematics Urbana, IL 61801 (USA); University of Kaiserslautern Department of Mathematics 67663 Kaiserslautern (Germany); United States Naval Academy Department of Mathematics Annapolis, MD 21402 (USA); Purdue University Department of Mathematics West Lafayette, IN 47907 (USA)},
author = {Denham, G., Schenck, H., Schulze, M., Wakefield, M., Walther, U.},
journal = {Annales de l’institut Fourier},
keywords = {hyperplane arrangement; logarithmic; differential form; free divisor; logarithmic differential form},
language = {eng},
number = {3},
pages = {1177-1203},
publisher = {Association des Annales de l’institut Fourier},
title = {Local cohomology of logarithmic forms},
url = {http://eudml.org/doc/275575},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Denham, G.
AU - Schenck, H.
AU - Schulze, M.
AU - Wakefield, M.
AU - Walther, U.
TI - Local cohomology of logarithmic forms
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 1177
EP - 1203
AB - Let $Y$ be a divisor on a smooth algebraic variety $X$. We investigate the geometry of the Jacobian scheme of $Y$, homological invariants derived from logarithmic differential forms along $Y$, and their relationship with the property that $Y$ be a free divisor. We consider arrangements of hyperplanes as a source of examples and counterexamples. In particular, we make a complete calculation of the local cohomology of logarithmic forms of generic hyperplane arrangements.
LA - eng
KW - hyperplane arrangement; logarithmic; differential form; free divisor; logarithmic differential form
UR - http://eudml.org/doc/275575
ER -
References
top- A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, F. Ehlers, Algebraic -modules, 2 (1987), Academic Press Inc., Boston, MA MR882000
- E. Brieskorn, Singular elements of semi-simple algebraic groups, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 (1971), 279-284, Gauthier-Villars, Paris Zbl0223.22012MR437798
- J. W. Bruce, Functions on discriminants, J. London Math. Soc. (2) 30 (1984), 551-567 Zbl0605.58011MR810963
- Francisco J. Calderón-Moreno, Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. École Norm. Sup. (4) 32 (1999), 701-714 Zbl0955.14013MR1710757
- Francisco J. Calderón Moreno, David Mond, Luis Narváez Macarro, Francisco J. Castro Jiménez, Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv. 77 (2002), 24-38 Zbl1010.32016MR1898392
- Francisco J. Castro-Jiménez, Luis Narváez-Macarro, David Mond, Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc. 348 (1996), 3037-3049 Zbl0862.32021MR1363009
- D. Cohen, G. Denham, M. Falk, A. Varchenko, Critical points and resonance of hyperplane arrangements, Canad. J. Math. 63 (2011), 1038-1057 Zbl1228.32028MR2866070
- Graham Denham, Mathias Schulze, Complexes, duality and Chern classes of logarithmic forms along hyperplane arrangements, Advanced Studies in Pure Mathematics 62 (2011) Zbl1258.32009MR2933791
- Paul H. Edelman, Victor Reiner, A counterexample to Orlik’s conjecture, Proc. Amer. Math. Soc. 118 (1993), 927-929 Zbl0791.52013MR1134624
- David Eisenbud, Craig Huneke, Wolmer Vasconcelos, Direct methods for primary decomposition, Invent. Math. 110 (1992), 207-235 Zbl0770.13018MR1185582
- Michel Granger, David Mond, Alicia Nieto-Reyes, Mathias Schulze, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), 811-850 Zbl1163.32014MR2521436
- Michel Granger, David Mond, Mathias Schulze, Free divisors in prehomogeneous vector spaces, Proc. Lond. Math. Soc. (3) 102 (2011), 923-950 Zbl1231.14042MR2795728
- Michel Granger, Mathias Schulze, On the formal structure of logarithmic vector fields, Compos. Math. 142 (2006), 765-778 Zbl1096.32016MR2231201
- Michel Granger, Mathias Schulze, On the symmetry of -functions of linear free divisors, Publ. Res. Inst. Math. Sci. 46 (2010), 479-506 Zbl1202.14046MR2760735
- Ignacio de Gregorio, David Mond, Christian Sevenheck, Linear free divisors and Frobenius manifolds, Compos. Math. 145 (2009), 1305-1350 Zbl1238.32022MR2551998
- Karsten Lebelt, Zur homologischen Dimension äusserer Potenzen von Moduln, Arch. Math. (Basel) 26 (1975), 595-601 Zbl0335.13007MR396534
- Karsten Lebelt, Freie Auflösungen äusserer Potenzen, Manuscripta Math. 21 (1977), 341-355 Zbl0365.13004MR450253
- E. J. N. Looijenga, Isolated singular points on complete intersections, 77 (1984), Cambridge University Press, Cambridge Zbl0552.14002MR747303
- Marguerite Mangeney, Christian Peskine, Lucien Szpiro, Anneaux de Gorenstein, et torsion en algèbre commutative, (1967), Secrétariat mathématique, Paris MR225844
- Hideyuki Matsumura, Commutative ring theory, 8 (1989), Cambridge University Press, Cambridge Zbl0666.13002MR1011461
- David Mond, Mathias Schulze, Adjoint divisors and free divisors, arXiv.org, math.AG (2010) Zbl1292.32014
- Mircea Mustaţǎ, Henry K. Schenck, The module of logarithmic -forms of a locally free arrangement, J. Algebra 241 (2001), 699-719 Zbl1047.14007MR1843320
- Peter Orlik, Hiroaki Terao, Arrangements of hyperplanes, 300 (1992), Springer-Verlag, Berlin Zbl0757.55001MR1217488
- Jan-Erik Roos, Bidualité et structure des foncteurs dérivés de dans la catégorie des modules sur un anneau régulier, C. R. Acad. Sci. Paris 254 (1962), 1556-1558 Zbl0105.01303MR136639
- Lauren L. Rose, Hiroaki Terao, A free resolution of the module of logarithmic forms of a generic arrangement, J. Algebra 136 (1991), 376-400 Zbl0732.13010MR1089305
- Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142 Zbl0224.32011MR294699
- Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291 Zbl0496.32007MR586450
- Christian Sevenheck, Bernstein polynomials and spectral numbers for linear free divisors, Ann. Inst. Fourier (Grenoble) 61 (2011), 379-400 Zbl1221.34237MR2828135
- Aron Simis, Differential idealizers and algebraic free divisors, Commutative algebra 244 (2006), 211-226, Chapman & Hall/CRC, Boca Raton, FL Zbl1099.13030MR2184799
- Peter Slodowy, Simple singularities and simple algebraic groups, 815 (1980), Springer, Berlin Zbl0441.14002MR584445
- L. Solomon, H. Terao, A formula for the characteristic polynomial of an arrangement, Adv. in Math. 64 (1987), 305-325 Zbl0625.05001MR888631
- D. van Straten, A note on the discriminant of a space curve, Manuscripta Math. 87 (1995), 167-177 Zbl0858.32031MR1334939
- Hiroaki Terao, Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 389-392 Zbl0476.14016MR596011
- Hiroaki Terao, Discriminant of a holomorphic map and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), 379-391 Zbl0535.32003MR722502
- Jonathan Wiens, The module of derivations for an arrangement of subspaces, Pacific J. Math. 198 (2001), 501-512 Zbl1062.14068MR1835521
- Jonathan Wiens, Sergey Yuzvinsky, De Rham cohomology of logarithmic forms on arrangements of hyperplanes, Trans. Amer. Math. Soc. 349 (1997), 1653-1662 Zbl0948.52014MR1407505
- Sergey Yuzvinsky, A free resolution of the module of derivations for generic arrangements, J. Algebra 136 (1991), 432-438 Zbl0732.13009MR1089307
- V. M. Zakalyukin, Reconstructions of fronts and caustics depending on a parameter, and versality of mappings, Current problems in mathematics, Vol. 22 (1983), 56-93, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow Zbl0554.58011MR735440
- Günter M. Ziegler, Combinatorial construction of logarithmic differential forms, Adv. Math. 76 (1989), 116-154 Zbl0725.05032MR1004488
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.