Local cohomology of logarithmic forms

G. Denham[1]; H. Schenck[2]; M. Schulze[3]; M. Wakefield[4]; U. Walther[5]

  • [1] University of Western Ontario Department of Mathematics London, Ontario N6A 5B7 (Canada)
  • [2] University of Illinois Department of Mathematics Urbana, IL 61801 (USA)
  • [3] University of Kaiserslautern Department of Mathematics 67663 Kaiserslautern (Germany)
  • [4] United States Naval Academy Department of Mathematics Annapolis, MD 21402 (USA)
  • [5] Purdue University Department of Mathematics West Lafayette, IN 47907 (USA)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 3, page 1177-1203
  • ISSN: 0373-0956

Abstract

top
Let Y be a divisor on a smooth algebraic variety X . We investigate the geometry of the Jacobian scheme of Y , homological invariants derived from logarithmic differential forms along Y , and their relationship with the property that Y be a free divisor. We consider arrangements of hyperplanes as a source of examples and counterexamples. In particular, we make a complete calculation of the local cohomology of logarithmic forms of generic hyperplane arrangements.

How to cite

top

Denham, G., et al. "Local cohomology of logarithmic forms." Annales de l’institut Fourier 63.3 (2013): 1177-1203. <http://eudml.org/doc/275575>.

@article{Denham2013,
abstract = {Let $Y$ be a divisor on a smooth algebraic variety $X$. We investigate the geometry of the Jacobian scheme of $Y$, homological invariants derived from logarithmic differential forms along $Y$, and their relationship with the property that $Y$ be a free divisor. We consider arrangements of hyperplanes as a source of examples and counterexamples. In particular, we make a complete calculation of the local cohomology of logarithmic forms of generic hyperplane arrangements.},
affiliation = {University of Western Ontario Department of Mathematics London, Ontario N6A 5B7 (Canada); University of Illinois Department of Mathematics Urbana, IL 61801 (USA); University of Kaiserslautern Department of Mathematics 67663 Kaiserslautern (Germany); United States Naval Academy Department of Mathematics Annapolis, MD 21402 (USA); Purdue University Department of Mathematics West Lafayette, IN 47907 (USA)},
author = {Denham, G., Schenck, H., Schulze, M., Wakefield, M., Walther, U.},
journal = {Annales de l’institut Fourier},
keywords = {hyperplane arrangement; logarithmic; differential form; free divisor; logarithmic differential form},
language = {eng},
number = {3},
pages = {1177-1203},
publisher = {Association des Annales de l’institut Fourier},
title = {Local cohomology of logarithmic forms},
url = {http://eudml.org/doc/275575},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Denham, G.
AU - Schenck, H.
AU - Schulze, M.
AU - Wakefield, M.
AU - Walther, U.
TI - Local cohomology of logarithmic forms
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 1177
EP - 1203
AB - Let $Y$ be a divisor on a smooth algebraic variety $X$. We investigate the geometry of the Jacobian scheme of $Y$, homological invariants derived from logarithmic differential forms along $Y$, and their relationship with the property that $Y$ be a free divisor. We consider arrangements of hyperplanes as a source of examples and counterexamples. In particular, we make a complete calculation of the local cohomology of logarithmic forms of generic hyperplane arrangements.
LA - eng
KW - hyperplane arrangement; logarithmic; differential form; free divisor; logarithmic differential form
UR - http://eudml.org/doc/275575
ER -

References

top
  1. A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, F. Ehlers, Algebraic D -modules, 2 (1987), Academic Press Inc., Boston, MA MR882000
  2. E. Brieskorn, Singular elements of semi-simple algebraic groups, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 (1971), 279-284, Gauthier-Villars, Paris Zbl0223.22012MR437798
  3. J. W. Bruce, Functions on discriminants, J. London Math. Soc. (2) 30 (1984), 551-567 Zbl0605.58011MR810963
  4. Francisco J. Calderón-Moreno, Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. École Norm. Sup. (4) 32 (1999), 701-714 Zbl0955.14013MR1710757
  5. Francisco J. Calderón Moreno, David Mond, Luis Narváez Macarro, Francisco J. Castro Jiménez, Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv. 77 (2002), 24-38 Zbl1010.32016MR1898392
  6. Francisco J. Castro-Jiménez, Luis Narváez-Macarro, David Mond, Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc. 348 (1996), 3037-3049 Zbl0862.32021MR1363009
  7. D. Cohen, G. Denham, M. Falk, A. Varchenko, Critical points and resonance of hyperplane arrangements, Canad. J. Math. 63 (2011), 1038-1057 Zbl1228.32028MR2866070
  8. Graham Denham, Mathias Schulze, Complexes, duality and Chern classes of logarithmic forms along hyperplane arrangements, Advanced Studies in Pure Mathematics 62 (2011) Zbl1258.32009MR2933791
  9. Paul H. Edelman, Victor Reiner, A counterexample to Orlik’s conjecture, Proc. Amer. Math. Soc. 118 (1993), 927-929 Zbl0791.52013MR1134624
  10. David Eisenbud, Craig Huneke, Wolmer Vasconcelos, Direct methods for primary decomposition, Invent. Math. 110 (1992), 207-235 Zbl0770.13018MR1185582
  11. Michel Granger, David Mond, Alicia Nieto-Reyes, Mathias Schulze, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), 811-850 Zbl1163.32014MR2521436
  12. Michel Granger, David Mond, Mathias Schulze, Free divisors in prehomogeneous vector spaces, Proc. Lond. Math. Soc. (3) 102 (2011), 923-950 Zbl1231.14042MR2795728
  13. Michel Granger, Mathias Schulze, On the formal structure of logarithmic vector fields, Compos. Math. 142 (2006), 765-778 Zbl1096.32016MR2231201
  14. Michel Granger, Mathias Schulze, On the symmetry of b -functions of linear free divisors, Publ. Res. Inst. Math. Sci. 46 (2010), 479-506 Zbl1202.14046MR2760735
  15. Ignacio de Gregorio, David Mond, Christian Sevenheck, Linear free divisors and Frobenius manifolds, Compos. Math. 145 (2009), 1305-1350 Zbl1238.32022MR2551998
  16. Karsten Lebelt, Zur homologischen Dimension äusserer Potenzen von Moduln, Arch. Math. (Basel) 26 (1975), 595-601 Zbl0335.13007MR396534
  17. Karsten Lebelt, Freie Auflösungen äusserer Potenzen, Manuscripta Math. 21 (1977), 341-355 Zbl0365.13004MR450253
  18. E. J. N. Looijenga, Isolated singular points on complete intersections, 77 (1984), Cambridge University Press, Cambridge Zbl0552.14002MR747303
  19. Marguerite Mangeney, Christian Peskine, Lucien Szpiro, Anneaux de Gorenstein, et torsion en algèbre commutative, (1967), Secrétariat mathématique, Paris MR225844
  20. Hideyuki Matsumura, Commutative ring theory, 8 (1989), Cambridge University Press, Cambridge Zbl0666.13002MR1011461
  21. David Mond, Mathias Schulze, Adjoint divisors and free divisors, arXiv.org, math.AG (2010) Zbl1292.32014
  22. Mircea Mustaţǎ, Henry K. Schenck, The module of logarithmic p -forms of a locally free arrangement, J. Algebra 241 (2001), 699-719 Zbl1047.14007MR1843320
  23. Peter Orlik, Hiroaki Terao, Arrangements of hyperplanes, 300 (1992), Springer-Verlag, Berlin Zbl0757.55001MR1217488
  24. Jan-Erik Roos, Bidualité et structure des foncteurs dérivés de lim dans la catégorie des modules sur un anneau régulier, C. R. Acad. Sci. Paris 254 (1962), 1556-1558 Zbl0105.01303MR136639
  25. Lauren L. Rose, Hiroaki Terao, A free resolution of the module of logarithmic forms of a generic arrangement, J. Algebra 136 (1991), 376-400 Zbl0732.13010MR1089305
  26. Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142 Zbl0224.32011MR294699
  27. Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291 Zbl0496.32007MR586450
  28. Christian Sevenheck, Bernstein polynomials and spectral numbers for linear free divisors, Ann. Inst. Fourier (Grenoble) 61 (2011), 379-400 Zbl1221.34237MR2828135
  29. Aron Simis, Differential idealizers and algebraic free divisors, Commutative algebra 244 (2006), 211-226, Chapman & Hall/CRC, Boca Raton, FL Zbl1099.13030MR2184799
  30. Peter Slodowy, Simple singularities and simple algebraic groups, 815 (1980), Springer, Berlin Zbl0441.14002MR584445
  31. L. Solomon, H. Terao, A formula for the characteristic polynomial of an arrangement, Adv. in Math. 64 (1987), 305-325 Zbl0625.05001MR888631
  32. D. van Straten, A note on the discriminant of a space curve, Manuscripta Math. 87 (1995), 167-177 Zbl0858.32031MR1334939
  33. Hiroaki Terao, Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 389-392 Zbl0476.14016MR596011
  34. Hiroaki Terao, Discriminant of a holomorphic map and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), 379-391 Zbl0535.32003MR722502
  35. Jonathan Wiens, The module of derivations for an arrangement of subspaces, Pacific J. Math. 198 (2001), 501-512 Zbl1062.14068MR1835521
  36. Jonathan Wiens, Sergey Yuzvinsky, De Rham cohomology of logarithmic forms on arrangements of hyperplanes, Trans. Amer. Math. Soc. 349 (1997), 1653-1662 Zbl0948.52014MR1407505
  37. Sergey Yuzvinsky, A free resolution of the module of derivations for generic arrangements, J. Algebra 136 (1991), 432-438 Zbl0732.13009MR1089307
  38. V. M. Zakalyukin, Reconstructions of fronts and caustics depending on a parameter, and versality of mappings, Current problems in mathematics, Vol. 22 (1983), 56-93, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow Zbl0554.58011MR735440
  39. Günter M. Ziegler, Combinatorial construction of logarithmic differential forms, Adv. Math. 76 (1989), 116-154 Zbl0725.05032MR1004488

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.