Displaying similar documents to “Local cohomology of logarithmic forms”

Monodromy of a family of hypersurfaces

Vincenzo Di Gennaro, Davide Franco (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let Y be an ( m + 1 ) -dimensional irreducible smooth complex projective variety embedded in a projective space. Let Z be a closed subscheme of Y , and δ be a positive integer such that Z , Y ( δ ) is generated by global sections. Fix an integer d δ + 1 , and assume the general divisor X | H 0 ( Y , Z , Y ( d ) ) | is smooth. Denote by H m ( X ; ) Z van the quotient of H m ( X ; ) by the cohomology of Y and also by the cycle classes of the irreducible components of dimension m of Z . In the present paper we prove that the monodromy representation on H m ( X ; ) Z van for the family...

1 -cocycles on the group of contactomorphisms on the supercircle S 1 | 3 generalizing the Schwarzian derivative

Boujemaa Agrebaoui, Raja Hattab (2016)

Czechoslovak Mathematical Journal

Similarity:

The relative cohomology H diff 1 ( 𝕂 ( 1 | 3 ) , 𝔬𝔰𝔭 ( 2 , 3 ) ; 𝒟 λ , μ ( S 1 | 3 ) ) of the contact Lie superalgebra 𝕂 ( 1 | 3 ) with coefficients in the space of differential operators 𝒟 λ , μ ( S 1 | 3 ) acting on tensor densities on S 1 | 3 , is calculated in N. Ben Fraj, I. Laraied, S. Omri (2013) and the generating 1 -cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative 1 -cocycle s ( X f ) = D 1 D 2 D 3 ( f ) α 3 1 / 2 , X f 𝕂 ( 1 | 3 ) which is invariant with respect to the conformal subsuperalgebra 𝔬𝔰𝔭 ( 2 , 3 ) of 𝕂 ( 1 | 3 ) . In this work we study the supergroup case. We give an explicit construction of 1 -cocycles...

Invariants, torsion indices and oriented cohomology of complete flags

Baptiste Calmès, Viktor Petrov, Kirill Zainoulline (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  G be a split semisimple linear algebraic group over a field and let  T be a split maximal torus of  G . Let  𝗁 be an oriented cohomology (algebraic cobordism, connective K -theory, Chow groups, Grothendieck’s K 0 , etc.) with formal group law F . We construct a ring from F and the characters of  T , that we call a formal group ring, and we define a characteristic ring morphism c from this formal group ring to  𝗁 ( G / B ) where G / B is the variety of Borel subgroups of  G . Our main result says that when the...

Relative exactness modulo a polynomial map and algebraic ( p , + ) -actions

Philippe Bonnet (2003)

Bulletin de la Société Mathématique de France

Similarity:

Let F = ( f 1 , ... , f q ) be a polynomial dominating map from n to  q . We study the quotient 𝒯 1 ( F ) of polynomial 1-forms that are exact along the generic fibres of F , by 1-forms of type d R + a i d f i , where R , a 1 , ... , a q are polynomials. We prove that 𝒯 1 ( F ) is always a torsion [ t 1 , ... , t q ] -module. Then we determine under which conditions on F we have 𝒯 1 ( F ) = 0 . As an application, we study the behaviour of a class of algebraic ( p , + ) -actions on n , and determine in particular when these actions are trivial.

S -depth on Z D -modules and local cohomology

Morteza Lotfi Parsa (2021)

Czechoslovak Mathematical Journal

Similarity:

Let R be a Noetherian ring, and I and J be two ideals of R . Let S be a Serre subcategory of the category of R -modules satisfying the condition C I and M be a Z D -module. As a generalization of the S - depth ( I , M ) and depth ( I , J , M ) , the S - depth of ( I , J ) on M is defined as S - depth ( I , J , M ) = inf { S - depth ( 𝔞 , M ) : 𝔞 W ˜ ( I , J ) } , and some properties of this concept are investigated. The relations between S - depth ( I , J , M ) and H I , J i ( M ) are studied, and it is proved that S - depth ( I , J , M ) = inf { i : H I , J i ( M ) S } , where S is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology...

Variations on a question concerning the degrees of divisors of x n - 1

Lola Thompson (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we examine a natural question concerning the divisors of the polynomial x n - 1 : “How often does x n - 1 have a divisor of every degree between 1 and n ?” In a previous paper, we considered the situation when x n - 1 is factored in [ x ] . In this paper, we replace [ x ] with 𝔽 p [ x ] , where p is an arbitrary-but-fixed prime. We also consider those n where this condition holds for all p .

Matlis dual of local cohomology modules

Batoul Naal, Kazem Khashyarmanesh (2020)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a commutative Noetherian local ring, 𝔞 be an ideal of R and M a finitely generated R -module such that 𝔞 M M and cd ( 𝔞 , M ) - grade ( 𝔞 , M ) 1 , where cd ( 𝔞 , M ) is the cohomological dimension of M with respect to 𝔞 and grade ( 𝔞 , M ) is the M -grade of 𝔞 . Let D ( - ) : = Hom R ( - , E ) be the Matlis dual functor, where E : = E ( R / 𝔪 ) is the injective hull of the residue field R / 𝔪 . We show that there exists the following long exact sequence 0 H 𝔞 n - 2 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n ( D ( H 𝔞 n ( M ) ) ) D ( M ) H 𝔞 n - 1 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n + 1 ( D ( H 𝔞 n ( M ) ) ) H 𝔞 n ( D ( H ( x 1 , ... , x n - 1 ) n - 1 ( M ) ) ) H 𝔞 n ( D ( H ( n - 1 M ) ) ) ... , where n : = cd ( 𝔞 , M ) is a non-negative integer, x 1 , ... , x n - 1 is a regular sequence in 𝔞 on M and, for an R -module L , H 𝔞 i ( L ) is the i th local cohomology module...

Brill–Noether loci for divisors on irregular varieties

Margarida Mendes Lopes, Rita Pardini, Pietro Pirola (2014)

Journal of the European Mathematical Society

Similarity:

We take up the study of the Brill-Noether loci W r ( L , X ) : = { η Pic 0 ( X ) | h 0 ( L η ) r + 1 } , where X is a smooth projective variety of dimension > 1 , L Pic ( X ) , and r 0 is an integer. By studying the infinitesimal structure of these loci and the Petri map (defined in analogy with the case of curves), we obtain lower bounds for h 0 ( K D ) , where D is a divisor that moves linearly on a smooth projective variety X of maximal Albanese dimension. In this way we sharpen the results of [Xi] and we generalize them to dimension > 2 . In the 2 -dimensional case...

Singularities of 2 Θ -divisors in the jacobian

Christian Pauly, Emma Previato (2001)

Bulletin de la Société Mathématique de France

Similarity:

We consider the linear system | 2 Θ 0 | of second order theta functions over the Jacobian J C of a non-hyperelliptic curve C . A result by J.Fay says that a divisor D | 2 Θ 0 | contains the origin 𝒪 J C with multiplicity 4 if and only if D contains the surface C - C = { 𝒪 ( p - q ) p , q C } J C . In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing 𝒪 with multiplicity 6 , divisors containing the fourfold C 2 - C 2 = { 𝒪 ( p + q - r - s ) p , q , r , s C } , and divisors singular along C - C , using...

On the Picard number of divisors in Fano manifolds

Cinzia Casagrande (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  X be a complex Fano manifold of arbitrary dimension, and D a prime divisor in  X . We consider the image 𝒩 1 ( D , X ) of  𝒩 1 ( D ) in  𝒩 1 ( X ) under the natural push-forward of 1 -cycles. We show that ρ X - ρ D codim 𝒩 1 ( D , X ) 8 . Moreover if codim 𝒩 1 ( D , X ) 3 , then either X S × T where S is a Del Pezzo surface, or codim 𝒩 1 ( D , X ) = 3 and X has a fibration in Del Pezzo surfaces onto a Fano manifold T such that ρ X - ρ T = 4 .

On the Configuration Spaces of Grassmannian Manifolds

Sandro Manfredini, Simona Settepanella (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n > 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .

Coleff-Herrera currents, duality, and noetherian operators

Mats Andersson (2011)

Bulletin de la Société Mathématique de France

Similarity:

Let be a coherent subsheaf of a locally free sheaf 𝒪 ( E 0 ) and suppose that = 𝒪 ( E 0 ) / has pure codimension. Starting with a residue current R obtained from a locally free resolution of we construct a vector-valued Coleff-Herrera current μ with support on the variety associated to such that φ is in if and only if μ φ = 0 . Such a current μ can also be derived algebraically from a fundamental theorem of Roos about the bidualizing functor, and the relation between these two approaches is discussed....

On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals

Thiago H. Freitas, Victor H. Jorge Pérez (2019)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 , I , J be ideals of a Noetherian local ring ( R , 𝔪 , k ) . Let M and N be finitely generated R -modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of H I , J t ( M ) and D ( H I , J t ( M ) ) , where t is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and D ( - ) : = Hom R ( - , E R ( k ) ) is the Matlis dual functor. We show that if R is a d -dimensional complete Cohen-Macaulay...

The number of minimum points of a positive quadratic form

G. L. Watson

Similarity:

CONTENTSIntroduction.......................................................................................61. Definition of certain special forms...........................................62. Statement of results...................................................................83. Proof of Theorem 2.....................................................................94. Preliminaries for Theorem 1.....................................................105. Further preliminaries for Theorem...

The cleanness of (symbolic) powers of Stanley-Reisner ideals

Somayeh Bandari, Ali Soleyman Jahan (2017)

Czechoslovak Mathematical Journal

Similarity:

Let Δ be a pure simplicial complex on the vertex set [ n ] = { 1 , ... , n } and I Δ its Stanley-Reisner ideal in the polynomial ring S = K [ x 1 , ... , x n ] . We show that Δ is a matroid (complete intersection) if and only if S / I Δ ( m ) ( S / I Δ m ) is clean for all m and this is equivalent to saying that S / I Δ ( m ) ( S / I Δ m , respectively) is Cohen-Macaulay for all m . By this result, we show that there exists a monomial ideal I with (pretty) cleanness property while S / I m or S / I ( m ) is not (pretty) clean for all integer m 3 . If dim ( Δ ) = 1 , we also prove that S / I Δ ( 2 ) ( S / I Δ 2 ) is clean if and only...

On the birational gonalities of smooth curves

E. Ballico (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let C be a smooth curve of genus g . For each positive integer r the birational r -gonality s r ( C ) of C is the minimal integer t such that there is L Pic t ( C ) with h 0 ( C , L ) = r + 1 . Fix an integer r 3 . In this paper we prove the existence of an integer g r such that for every integer g g r there is a smooth curve C of genus g with s r + 1 ( C ) / ( r + 1 ) > s r ( C ) / r , i.e. in the sequence of all birational gonalities of C at least one of the slope inequalities fails.