Green functions, Segre numbers, and King’s formula

Mats Andersson[1]; Elizabeth Wulcan[1]

  • [1] Department of Mathematics Chalmers University of Technology and the University of Gothenburg S-412 96 Gothenburg SWEDEN

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 6, page 2639-2657
  • ISSN: 0373-0956

Abstract

top
Let 𝒥 be a coherent ideal sheaf on a complex manifold X with zero set Z , and let G be a plurisubharmonic function such that G = log | f | + 𝒪 ( 1 ) locally at Z , where f is a tuple of holomorphic functions that defines 𝒥 . We give a meaning to the Monge-Ampère products ( d d c G ) k for k = 0 , 1 , 2 , ... , and prove that the Lelong numbers of the currents M k 𝒥 : = 1 Z ( d d c G ) k at x coincide with the so-called Segre numbers of J at x , introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that M k 𝒥 satisfy a certain generalization of the classical King formula.

How to cite

top

Andersson, Mats, and Wulcan, Elizabeth. "Green functions, Segre numbers, and King’s formula." Annales de l’institut Fourier 64.6 (2014): 2639-2657. <http://eudml.org/doc/275584>.

@article{Andersson2014,
abstract = {Let $\mathcal\{J\}$ be a coherent ideal sheaf on a complex manifold $X$ with zero set $Z$, and let $G$ be a plurisubharmonic function such that $G=\log |f|+\mathcal\{O\}(1)$ locally at $Z$, where $f$ is a tuple of holomorphic functions that defines $\mathcal\{J\}$. We give a meaning to the Monge-Ampère products $(dd^c G)^k$ for $k=0,1,2,\ldots $, and prove that the Lelong numbers of the currents $M_k^\{\mathcal\{J\}\}:=\{\bf 1\}_Z(dd^c G)^k$ at $x$ coincide with the so-called Segre numbers of $J$ at $x$, introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that $M_k^\{\mathcal\{J\}\}$ satisfy a certain generalization of the classical King formula.},
affiliation = {Department of Mathematics Chalmers University of Technology and the University of Gothenburg S-412 96 Gothenburg SWEDEN; Department of Mathematics Chalmers University of Technology and the University of Gothenburg S-412 96 Gothenburg SWEDEN},
author = {Andersson, Mats, Wulcan, Elizabeth},
journal = {Annales de l’institut Fourier},
keywords = {Green function; Segre numbers; Monge-Ampère products; King’s formula; King's formula},
language = {eng},
number = {6},
pages = {2639-2657},
publisher = {Association des Annales de l’institut Fourier},
title = {Green functions, Segre numbers, and King’s formula},
url = {http://eudml.org/doc/275584},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Andersson, Mats
AU - Wulcan, Elizabeth
TI - Green functions, Segre numbers, and King’s formula
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2639
EP - 2657
AB - Let $\mathcal{J}$ be a coherent ideal sheaf on a complex manifold $X$ with zero set $Z$, and let $G$ be a plurisubharmonic function such that $G=\log |f|+\mathcal{O}(1)$ locally at $Z$, where $f$ is a tuple of holomorphic functions that defines $\mathcal{J}$. We give a meaning to the Monge-Ampère products $(dd^c G)^k$ for $k=0,1,2,\ldots $, and prove that the Lelong numbers of the currents $M_k^{\mathcal{J}}:={\bf 1}_Z(dd^c G)^k$ at $x$ coincide with the so-called Segre numbers of $J$ at $x$, introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that $M_k^{\mathcal{J}}$ satisfy a certain generalization of the classical King formula.
LA - eng
KW - Green function; Segre numbers; Monge-Ampère products; King’s formula; King's formula
UR - http://eudml.org/doc/275584
ER -

References

top
  1. R. Achilles, M. Manaresi, Multiplicities of bigraded And Intersection theory, Math. Ann. 309 (1997), 573-591 Zbl0894.14005MR1483824
  2. R. Achilles, S. Rams, Intersection numbers, Segre numbers and generalized Samuel multiplicities, Arch. Math. (Basel) 77 (2001), 391-398 Zbl1032.13012MR1858883
  3. M. Andersson, Residue currents of holomorphic sections and Lelong currents, Arkiv för matematik 43 (2005), 201-219 Zbl1103.32020MR2172988
  4. M. Andersson, H. Samuelsson Kalm, E. Wulcan, A. Yger, Segre numbers, a generalized King formula, and local intersections 
  5. E. Bedford, A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40 Zbl0547.32012MR674165
  6. E. Bedford, A. Taylor, Fine topology, Šilov boundary, and ( d d c ) n , J. Funct. Anal. 72 (1987), 225-251 Zbl0677.31005MR886812
  7. Z. Błocki, (2012) 
  8. S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Monge-Ampère equations in big cohomology classes, Acta Math. 205 (2010), 199-262 Zbl1213.32025MR2746347
  9. J.-P. Demailly, Complex and Differential geometry Zbl1296.01027
  10. J.-P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), 519-564 Zbl0595.32006MR881709
  11. J.-P. Demailly, Monge-Ampère Operators, Lelong Numbers, and Intersection Theory, Complex analysis and geometry (1993), 115-193, Plenum, New York Zbl0792.32006MR1211880
  12. J.-P. Demailly, H. H. Pham, A sharp lower bound for the log canonical threshold, Acta Math. 212 (2014), 1-9 Zbl1298.14006MR3179606
  13. W. Fulton, Intersection theory, (1998), Springer-Verlag, Berlin-Heidelberg Zbl0541.14005MR1644323
  14. T. Gaffney, R. Gassler, Segre numbers and hypersurface singularities, J. Algebraic Geom. 8 (1999), 695-736 Zbl0971.13021MR1703611
  15. J. R. King, A residue formula for complex subvarieties, Proc. Carolina conf. on holomoprhic mappings and minimal surfaces (1970), 43-56, Univ. of North Carolina, Chapel Hill Zbl0224.32009MR273061
  16. R. Lazarsfeld, Positivity in Algebraic Geometry II. Positivity for vector bundles, and multiplier ideals, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
  17. D. Massey, Lê cycles and hypersurface singularities, 1615 (1995), Springer-Verlag, Berlin Zbl0835.32002MR1441075
  18. David B. Massey, Numerical control over complex analytic singularities, Mem. Amer. Math. Soc. 163 (2003) Zbl1025.32010MR1962934
  19. A Rashkovskii, Multi-circled Singularities, Lelong Numbers, and Integrability Index, J. Geom. Anal. 23 (2013), 1976-1992 Zbl1282.32013MR3107686
  20. A. Rashkovskii, R. Sigurdsson, Green functions with singularities along complex spaces, Internat. J. Math. 16 (2005), 333-355 Zbl1085.32018MR2133260
  21. Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53-156 Zbl0289.32003MR352516
  22. H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans n , Bull. Soc. Math. France 100 (1972), 353-408 Zbl0246.32009MR352517
  23. J. Stückrad, W. Vogel, An algebraic approach to the intersection theory, Queen’s Papers in Pure and Appl. Math. 61 (1982), 1-32 Zbl0599.14003MR783085
  24. P. Tworzewski, Intersection theory in complex analytic geometry, Ann. Polon. Math. 62 (1995), 177-191 Zbl0911.32018MR1356791

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.