On the complexity of families of pseudo-random subsets
Ramachandran Balasubramanian[1]; Cécile Dartyge[2]; Élie Mosaki[3]
- [1] Institute of Mathematical Sciences C.I.T. Campus Taramani, Chennai 600113 (India)
- [2] Université de Lorraine Institut Élie Cartan BP 70239 54506 Vandœuvre-lès-Nancy Cedex (France)
- [3] Université de Lyon Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 43, boulevard du 11 Novembre 1918 69622 Villeurbanne (France)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 1, page 267-296
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Alan Adolphson, Steven Sperber, Exponential sums and Newton polyhedra : cohomology and estimates, Ann. of Math. (2) 130 (1989), 367-406 Zbl0723.14017MR1014928
- Rudolf Ahlswede, Levon H. Khachatrian, C. Mauduit, András Sárközy, A complexity measure for families of binary sequences, Period. Math. Hungar. 46 (2003), 107-118 Zbl1050.11069MR2004667
- B. J. Birch, Enrico Bombieri, Appendix : On some exponential sums, Annals of Math. 121 (1985), 345-350 MR786351
- Enrico Bombieri, On exponential sums in finite fields, Amer. J. Math. 88 (1966), 71-105 Zbl0171.41504MR200267
- Cécile Dartyge, Elie Mosaki, András Sárközy, On large families of subsets of the set of the integers not exceeding , Ramanujan J. 18 (2009), 209-229 Zbl1226.05006MR2475937
- Cécile Dartyge, András Sárközy, Large families of pseudorandom subsets formed by power residues, Unif. Distrib. Theory 2 (2007), 73-88 Zbl1140.05004MR2377457
- Cécile Dartyge, András Sárközy, On pseudo-random subsets of the set of the integers not exceeding , Period. Math. Hungar. 54 (2007), 183-200 Zbl1174.05001MR2337317
- Cécile Dartyge, András Sárközy, Mihály Szalay, On the pseudo-randomness of subsets related to primitive roots, Combinatorica 30 (2010), 139-162 Zbl1259.11072MR2676832
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. (1974), 273-307 Zbl0287.14001MR340258
- Bernard Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math. 82 (1960), 631-648 Zbl0173.48501MR140494
- Jürgen Eichenauer-Herrmann, Harald Niederreiter, Bounds for exponential sums and their applications to pseudorandom numbers, Acta Arith. 67 (1994), 269-281 Zbl0957.11050MR1292739
- John B. Friedlander, Henryk Iwaniec, Incomplete Kloosterman sums and a divisor problem, Ann. of Math. (2) 121 (1985), 319-350 Zbl0572.10029MR786351
- Ben Green, Imre Z. Ruzsa, Sum-free sets in abelian groups, Israel J. Math. 147 (2005), 157-188 Zbl1158.11311MR2166359
- C. Hooley, On exponential sums and certain of their applications, Number theory days, 1980 (Exeter, 1980) 56 (1982), 92-122, Cambridge Univ. Press, Cambridge Zbl0488.10041MR697259
- Pascal Hubert, András Sárközy, On -pseudorandom binary sequences, Period. Math. Hungar. 49 (2004), 73-91 Zbl1073.11054MR2092784
- Serge Lang, André Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819-827 Zbl0058.27202MR65218
- Christian Mauduit, Joël Rivat, András Sárközy, Construction of pseudorandom binary sequences using additive characters, Monatsh. Math. 141 (2004), 197-208 Zbl1110.11024MR2042211
- Christian Mauduit, András Sárközy, On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365-377 Zbl0886.11048MR1483689
- Antonio Rojas-León, Purity of exponential sums on . II, J. Reine Angew. Math. 603 (2007), 35-53 Zbl1214.11090MR2312553
- András Sárközy, A finite pseudorandom binary sequence, Studia Sci. Math. Hungar 38 (2001), 377-384 Zbl0997.11062MR1877793
- Wolfgang M. Schmidt, Equations over finite fields. An elementary approach, (1976), Springer-Verlag, Berlin Zbl0329.12001MR429733
- M. Waldschmidt, Le théorème de Bézout et le résultant de deux polynômes, Revue de Mathématiques Spéciales (2003–2004)
- Robert J. Walker, Algebraic curves, (1978), Springer-Verlag, New York Zbl0399.14016MR513824