Evolution by the vortex filament equation of curves with a corner
- [1] Laboratoire Analyse et probabilités (EA 2172), Déptartement de Mathématiques, Université d’Évry, 23 Bd. de France, 91037 Évry, France
Journées Équations aux dérivées partielles (2013)
- page 1-18
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topBanica, Valeria. "Evolution by the vortex filament equation of curves with a corner." Journées Équations aux dérivées partielles (2013): 1-18. <http://eudml.org/doc/275631>.
@article{Banica2013,
abstract = {In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in $\mathbb\{R\}^3$ and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations of self-similar solutions up to a singularity formation in finite time, and beyond this time. We shall give a sketch of the proof. These results were obtained in collaboration with Luis Vega.},
affiliation = {Laboratoire Analyse et probabilités (EA 2172), Déptartement de Mathématiques, Université d’Évry, 23 Bd. de France, 91037 Évry, France},
author = {Banica, Valeria},
journal = {Journées Équations aux dérivées partielles},
keywords = {Vortex filaments; selfsimilar solutions; Schrödinger equations; scattering},
language = {eng},
pages = {1-18},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Evolution by the vortex filament equation of curves with a corner},
url = {http://eudml.org/doc/275631},
year = {2013},
}
TY - JOUR
AU - Banica, Valeria
TI - Evolution by the vortex filament equation of curves with a corner
JO - Journées Équations aux dérivées partielles
PY - 2013
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 18
AB - In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in $\mathbb{R}^3$ and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations of self-similar solutions up to a singularity formation in finite time, and beyond this time. We shall give a sketch of the proof. These results were obtained in collaboration with Luis Vega.
LA - eng
KW - Vortex filaments; selfsimilar solutions; Schrödinger equations; scattering
UR - http://eudml.org/doc/275631
ER -
References
top- R.J. Arms and F.R. Hama, Localized-induction concept on a curved vortex and motion of an elliptic vortex ring, Phys. Fluids, (1965), 553.
- V. Banica and L. Vega, On the stability of a singular vortex dynamics, Comm. Math. Phys. 286 (2009), 593–627. Zbl1183.35029MR2472037
- V. Banica and L. Vega, Scattering for 1D cubic NLS and singular vortex dynamics, J. Eur. Math. Soc. 14 (2012), 209–253. Zbl1290.35235MR2862038
- V. Banica and L. Vega, Stability of the self-similar dynamics of a vortex filament, to appear in Arch. Ration. Mech. Anal. Zbl06260948MR3116002
- V. Banica and L. Vega, The initial value problem for the binormal flow with rough data, ArXiv:1304.0996.
- J Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156. Zbl0787.35097MR1209299
- T. F. Buttke, A numerical study of superfluid turbulence in the Self Induction Approximation, J. of Compt. Physics 76 (1988), 301–326 Zbl0639.76136
- A. Calini and T. Ivey, Stability of Small-amplitude Torus Knot Solutions of the Localized Induction Approximation, J. Phys. A: Math. Theor. 44 (2011) 335204. Zbl1223.35286MR2822117
- R. Carles, Geometric Optics and Long Range Scattering for One-Dimensional Nonlinear Schrödinger Equations, Comm. Math. Phys. 220 (2001), 41–67. Zbl1029.35211MR1882399
- T. Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation, Non. Anal. TMA 14 (1990), 807–836. Zbl0706.35127MR1055532
- M. Christ, J. Colliander, and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, ArXiv:0311048. Zbl1048.35101
- L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo 22 (1906), 117.
- P. Germain, N. Masmoudi and J. Shatah, Global solutions for 2D quadratic Schrödinger equations, J. Math. Pures Appl. 97(2012), 505–543. Zbl1244.35134MR2914945
- J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. II Scattering theory, general case, J. Funct. Anal. 32 (1979), 33–71. Zbl0396.35029MR533219
- A. Grünrock, Bi- and trilinear Schr?dinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not. 41 (2005), 2525–2558. Zbl1088.35063MR2181058
- S. Gustafson, K. Nakanishi, T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré 8 (2007), no. 7, 1303–1331. Zbl05218113MR2360438
- S. Gutiérrez, J. Rivas and L. Vega, Formation of singularities and self-similar vortex motion under the localized induction approximation, Comm. Part. Diff. Eq. 28 (2003), 927–968. Zbl1044.35089MR1986056
- H. Hasimoto, A soliton in a vortex filament, J. Fluid Mech. 51 (1972), 477–485. Zbl0237.76010
- N. Hayashi and P. Naumkin, Domain and range of the modified wave operator for Schr?odinger equations with critical nonlinearity, Comm. Math. Phys. 267 (2006), 477–492. Zbl1113.81121MR2249776
- E.J. Hopfinger, F.K. Browand, Vortex solitary waves in a rotating, turbulent flow, Nature 295, (1981), 393–395.
- F. de la Hoz, C. García-Cervera and L. Vega, A numerical study of the self-similar solutions of the Schrödinger Map, SIAM J. Appl. Math. 70 (2009), 1047–1077. Zbl1219.65139MR2546352
- R. L. Jerrard and D. Smets, On Schrödinger maps from to , arXiv:1105.2736. Zbl1308.58023
- R. L. Jerrard and D. Smets, On the motion of a curve by its binormal curvature, arXiv:1109.5483. Zbl1327.53086
- C. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical non-linear dispersive equations, Duke Math. J. 106 (2001) 716–633. Zbl1034.35145MR1813239
- N. Koiso, Vortex filament equation and semilinear Schrödinger equation, Nonlinear Waves, Hokkaido University Technical Report Series in Mathematics 43 (1996) 221–226. Zbl0968.35110
- S. Lafortune, Stability of solitons on vortex filaments, Phys. Lett. A bf 377 (2013), 766–769. MR3021944
- M. Lakshmanan and M. Daniel, On the evolution of higher dimensional Heisenberg continuum spin systems, Physica A (1981), 107, 533–552. MR624580
- M. Lakshmanan, T. W. Ruijgrok and C. J. Thompson, On the the dynamics of a continuum spin system, Physica A (1976), 84, 577–590. MR449262
- T. Levi-Civita, Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (1932), 229–250 Zbl0004.37305
- T. Lipniacki, Quasi-static solutions for quantum vortex motion under the localized induction approximation, J. Fluid Mech. 477 (2002), 321–337. Zbl1063.76521MR2011430
- F. Maggioni, S. Z. Alamri, C. F. Barenghi, and R. L. Ricca, Velocity, energy and helicity of vortex knots and unknots, Phys. Rev. E 82 (2010), 26309–26317. MR2736443
- A. Majda and A. Bertozzi, Vorticity and incompressible flow., Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002. Zbl0983.76001MR1867882
- K. Moriyama, S. Tonegawa and Y. Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math. 5 (2003), 983–996 . Zbl1055.35112MR2030566
- T. Nishiyama and A. Tani, Solvability of the localized induction equation for vortex motion, Comm. Math. Phys. 162 (1994), 433?-445. Zbl0811.35100MR1277470
- T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), 479–493. Zbl0742.35043MR1121130
- C. S. Peskin and D. M. McQueen, Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets, Am. J. Physiol. 266 (Heart Circ. Physiol. 35) (1994), H319–H328.
- R. L. Ricca, The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics, Fluid Dynam. Res. 18 (1996), 245–268. Zbl1006.01505MR1408546
- R.L. Ricca, Rediscovery of Da Rios equations, Nature 352 (1991), 561–562.
- K.W. Schwarz, Three-dimensional vortex dynamics in superfluid He: Line-line and line-boundary interactions, Phys. Rev B 31 (1985), 5782–5804.
- A. Shimomura and S. Tonegawa, Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions, Differ. Integral Equ. 17 (2004), 127–150. Zbl1164.35325MR2035499
- A. Tani and T. Nishiyama, Solvability of equations for motion of a vortex filament with or without axial flow, Publ. Res. Inst. Math. Sci. 33 (1997), 509?-526. Zbl0905.35070MR1489989
- A. Vargas and L. Vega, Global well-posedness for 1d non-linear Schrodinger equation for data with an infinite norm, J. Math. Pures Appl. 80 (2001), 1029–1044. Zbl1027.35134MR1876762
- E.J. Vigmond, C. Clements, D.M. McQueen and C.S. Peskin, Effect of bundle branch block on cardiac output: A whole heart simulation study, Prog. Biophys. Mol. Biol. 97 (2008), 520–42.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.