Evolution by the vortex filament equation of curves with a corner

Valeria Banica[1]

  • [1] Laboratoire Analyse et probabilités (EA 2172), Déptartement de Mathématiques, Université d’Évry, 23 Bd. de France, 91037 Évry, France

Journées Équations aux dérivées partielles (2013)

  • page 1-18
  • ISSN: 0752-0360

Abstract

top
In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in 3 and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations of self-similar solutions up to a singularity formation in finite time, and beyond this time. We shall give a sketch of the proof. These results were obtained in collaboration with Luis Vega.

How to cite

top

Banica, Valeria. "Evolution by the vortex filament equation of curves with a corner." Journées Équations aux dérivées partielles (2013): 1-18. <http://eudml.org/doc/275631>.

@article{Banica2013,
abstract = {In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in $\mathbb\{R\}^3$ and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations of self-similar solutions up to a singularity formation in finite time, and beyond this time. We shall give a sketch of the proof. These results were obtained in collaboration with Luis Vega.},
affiliation = {Laboratoire Analyse et probabilités (EA 2172), Déptartement de Mathématiques, Université d’Évry, 23 Bd. de France, 91037 Évry, France},
author = {Banica, Valeria},
journal = {Journées Équations aux dérivées partielles},
keywords = {Vortex filaments; selfsimilar solutions; Schrödinger equations; scattering},
language = {eng},
pages = {1-18},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Evolution by the vortex filament equation of curves with a corner},
url = {http://eudml.org/doc/275631},
year = {2013},
}

TY - JOUR
AU - Banica, Valeria
TI - Evolution by the vortex filament equation of curves with a corner
JO - Journées Équations aux dérivées partielles
PY - 2013
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 18
AB - In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in $\mathbb{R}^3$ and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations of self-similar solutions up to a singularity formation in finite time, and beyond this time. We shall give a sketch of the proof. These results were obtained in collaboration with Luis Vega.
LA - eng
KW - Vortex filaments; selfsimilar solutions; Schrödinger equations; scattering
UR - http://eudml.org/doc/275631
ER -

References

top
  1. R.J. Arms and F.R. Hama, Localized-induction concept on a curved vortex and motion of an elliptic vortex ring, Phys. Fluids, (1965), 553. 
  2. V. Banica and L. Vega, On the stability of a singular vortex dynamics, Comm. Math. Phys. 286 (2009), 593–627. Zbl1183.35029MR2472037
  3. V. Banica and L. Vega, Scattering for 1D cubic NLS and singular vortex dynamics, J. Eur. Math. Soc. 14 (2012), 209–253. Zbl1290.35235MR2862038
  4. V. Banica and L. Vega, Stability of the self-similar dynamics of a vortex filament, to appear in Arch. Ration. Mech. Anal. Zbl06260948MR3116002
  5. V. Banica and L. Vega, The initial value problem for the binormal flow with rough data, ArXiv:1304.0996. 
  6. J  Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156. Zbl0787.35097MR1209299
  7. T. F. Buttke, A numerical study of superfluid turbulence in the Self Induction Approximation, J. of Compt. Physics 76 (1988), 301–326 Zbl0639.76136
  8. A. Calini and T. Ivey, Stability of Small-amplitude Torus Knot Solutions of the Localized Induction Approximation, J. Phys. A: Math. Theor. 44 (2011) 335204. Zbl1223.35286MR2822117
  9. R. Carles, Geometric Optics and Long Range Scattering for One-Dimensional Nonlinear Schrödinger Equations, Comm. Math. Phys. 220 (2001), 41–67. Zbl1029.35211MR1882399
  10. T. Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation, Non. Anal. TMA 14 (1990), 807–836. Zbl0706.35127MR1055532
  11. M. Christ, J. Colliander, and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, ArXiv:0311048. Zbl1048.35101
  12. L. S. Da Rios, On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo 22 (1906), 117. 
  13. P. Germain, N. Masmoudi and J. Shatah, Global solutions for 2D quadratic Schrödinger equations, J. Math. Pures Appl. 97(2012), 505–543. Zbl1244.35134MR2914945
  14. J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. II Scattering theory, general case, J. Funct. Anal. 32 (1979), 33–71. Zbl0396.35029MR533219
  15. A. Grünrock, Bi- and trilinear Schr?dinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not. 41 (2005), 2525–2558. Zbl1088.35063MR2181058
  16. S. Gustafson, K. Nakanishi, T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré 8 (2007), no. 7, 1303–1331. Zbl05218113MR2360438
  17. S. Gutiérrez, J. Rivas and L. Vega, Formation of singularities and self-similar vortex motion under the localized induction approximation, Comm. Part. Diff. Eq. 28 (2003), 927–968. Zbl1044.35089MR1986056
  18. H. Hasimoto, A soliton in a vortex filament, J. Fluid Mech. 51 (1972), 477–485. Zbl0237.76010
  19. N. Hayashi and P. Naumkin, Domain and range of the modified wave operator for Schr?odinger equations with critical nonlinearity, Comm. Math. Phys. 267 (2006), 477–492. Zbl1113.81121MR2249776
  20. E.J. Hopfinger, F.K. Browand, Vortex solitary waves in a rotating, turbulent flow, Nature 295, (1981), 393–395. 
  21. F. de la Hoz, C. García-Cervera and L. Vega, A numerical study of the self-similar solutions of the Schrödinger Map, SIAM J. Appl. Math. 70 (2009), 1047–1077. Zbl1219.65139MR2546352
  22. R. L. Jerrard and D. Smets, On Schrödinger maps from T 1 to S 2 , arXiv:1105.2736. Zbl1308.58023
  23. R. L. Jerrard and D. Smets, On the motion of a curve by its binormal curvature, arXiv:1109.5483. Zbl1327.53086
  24. C. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical non-linear dispersive equations, Duke Math. J. 106 (2001) 716–633. Zbl1034.35145MR1813239
  25. N. Koiso, Vortex filament equation and semilinear Schrödinger equation, Nonlinear Waves, Hokkaido University Technical Report Series in Mathematics 43 (1996) 221–226. Zbl0968.35110
  26. S. Lafortune, Stability of solitons on vortex filaments, Phys. Lett. A bf 377 (2013), 766–769. MR3021944
  27. M. Lakshmanan and M. Daniel, On the evolution of higher dimensional Heisenberg continuum spin systems, Physica A (1981), 107, 533–552. MR624580
  28. M. Lakshmanan, T. W. Ruijgrok and C. J. Thompson, On the the dynamics of a continuum spin system, Physica A (1976), 84, 577–590. MR449262
  29. T. Levi-Civita, Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (1932), 229–250 Zbl0004.37305
  30. T. Lipniacki, Quasi-static solutions for quantum vortex motion under the localized induction approximation, J. Fluid Mech. 477 (2002), 321–337. Zbl1063.76521MR2011430
  31. F. Maggioni, S. Z. Alamri, C. F. Barenghi, and R. L. Ricca, Velocity, energy and helicity of vortex knots and unknots, Phys. Rev. E 82 (2010), 26309–26317. MR2736443
  32. A. Majda and A.  Bertozzi, Vorticity and incompressible flow., Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002. Zbl0983.76001MR1867882
  33. K. Moriyama, S. Tonegawa and Y.  Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math. 5 (2003), 983–996 . Zbl1055.35112MR2030566
  34. T. Nishiyama and A. Tani, Solvability of the localized induction equation for vortex motion, Comm. Math. Phys. 162 (1994), 433?-445. Zbl0811.35100MR1277470
  35. T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), 479–493. Zbl0742.35043MR1121130
  36. C. S. Peskin and D. M. McQueen, Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets, Am. J. Physiol. 266 (Heart Circ. Physiol. 35) (1994), H319–H328. 
  37. R. L. Ricca, The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics, Fluid Dynam. Res. 18 (1996), 245–268. Zbl1006.01505MR1408546
  38. R.L. Ricca, Rediscovery of Da Rios equations, Nature 352 (1991), 561–562. 
  39. K.W. Schwarz, Three-dimensional vortex dynamics in superfluid 4 He: Line-line and line-boundary interactions, Phys. Rev B 31 (1985), 5782–5804. 
  40. A. Shimomura and S. Tonegawa, Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions, Differ. Integral Equ. 17 (2004), 127–150. Zbl1164.35325MR2035499
  41. A. Tani and T. Nishiyama, Solvability of equations for motion of a vortex filament with or without axial flow, Publ. Res. Inst. Math. Sci. 33 (1997), 509?-526. Zbl0905.35070MR1489989
  42. A. Vargas and L. Vega, Global well-posedness for 1d non-linear Schrodinger equation for data with an infinite L 2 norm, J. Math. Pures Appl. 80 (2001), 1029–1044. Zbl1027.35134MR1876762
  43. E.J. Vigmond, C. Clements, D.M. McQueen and C.S. Peskin, Effect of bundle branch block on cardiac output: A whole heart simulation study, Prog. Biophys. Mol. Biol. 97 (2008), 520–42. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.