Conformal blocks and cohomology in genus 0

Prakash Belkale[1]; Swarnava Mukhopadhyay[2]

  • [1] University of North Carolina Department of Mathematics Chapel Hill, NC 27599 (USA)
  • [2] University of Maryland Department of Mathematics College Park, MD 20742 (USA)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 4, page 1669-1719
  • ISSN: 0373-0956

Abstract

top
We give a characterization of conformal blocks in terms of the singular cohomology of suitable smooth projective varieties, in genus 0 for classical Lie algebras and G 2 .

How to cite

top

Belkale, Prakash, and Mukhopadhyay, Swarnava. "Conformal blocks and cohomology in genus 0." Annales de l’institut Fourier 64.4 (2014): 1669-1719. <http://eudml.org/doc/275661>.

@article{Belkale2014,
abstract = {We give a characterization of conformal blocks in terms of the singular cohomology of suitable smooth projective varieties, in genus $0$ for classical Lie algebras and $G_2$.},
affiliation = {University of North Carolina Department of Mathematics Chapel Hill, NC 27599 (USA); University of Maryland Department of Mathematics College Park, MD 20742 (USA)},
author = {Belkale, Prakash, Mukhopadhyay, Swarnava},
journal = {Annales de l’institut Fourier},
keywords = {conformal blocks; logarithmic forms; singular cohomology},
language = {eng},
number = {4},
pages = {1669-1719},
publisher = {Association des Annales de l’institut Fourier},
title = {Conformal blocks and cohomology in genus 0},
url = {http://eudml.org/doc/275661},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Belkale, Prakash
AU - Mukhopadhyay, Swarnava
TI - Conformal blocks and cohomology in genus 0
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 4
SP - 1669
EP - 1719
AB - We give a characterization of conformal blocks in terms of the singular cohomology of suitable smooth projective varieties, in genus $0$ for classical Lie algebras and $G_2$.
LA - eng
KW - conformal blocks; logarithmic forms; singular cohomology
UR - http://eudml.org/doc/275661
ER -

References

top
  1. Hidetoshi Awata, Akihiro Tsuchiya, Yasuhiko Yamada, Integral formulas for the WZNW correlation functions, Nuclear Phys. B 365 (1991), 680-696 MR1136712
  2. Arnaud Beauville, Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) 9 (1996), 75-96, Bar-Ilan Univ., Ramat Gan Zbl0848.17024MR1360497
  3. Prakash Belkale, Unitarity of the KZ/Hitchin connection on conformal blocks in genus 0 for arbitrary Lie algebras, J. Math. Pures Appl. (9) 98 (2012), 367-389 Zbl1277.14035MR2968161
  4. Roman Bezrukavnikov, Michael Finkelberg, Vadim Schechtman, Factorizable sheaves and quantum groups, 1691 (1998), Springer-Verlag, Berlin Zbl0938.17016MR1641131
  5. Egbert Brieskorn, Sur les groupes de tresses [d’après V. I. Arnolʼd], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401 (1973), 21-44. Lecture Notes in Math., Vol. 317, Springer, Berlin Zbl0277.55003MR422674
  6. Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), 5-57 Zbl0219.14007MR498551
  7. Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by hypergeometric correlators in WZW models. II, Comm. Math. Phys. 170 (1995), 219-247 Zbl0842.17043MR1331699
  8. Eduard Looijenga, Unitarity of SL ( 2 ) -conformal blocks in genus zero, J. Geom. Phys. 59 (2009), 654-662 Zbl1165.32304MR2518993
  9. Eduard Looijenga, The KZ system via polydifferentials, Arrangements of hyperplanes—Sapporo 2009 62 (2012), 189-231, Math. Soc. Japan, Tokyo Zbl1260.32004MR2933798
  10. T. R. Ramadas, The “Harder-Narasimhan trace” and unitarity of the KZ/Hitchin connection: genus 0, Ann. of Math. (2) 169 (2009), 1-39 Zbl1167.32011MR2480600
  11. Vadim V. Schechtman, Hiroaki Terao, Alexander N. Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995), 93-102 Zbl0849.32025MR1344845
  12. Vadim V. Schechtman, Alexander N. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent. Math. 106 (1991), 139-194 Zbl0754.17024MR1123378
  13. Jean-Pierre Serre, Complex semisimple Lie algebras, (2001), Springer-Verlag, Berlin Zbl1058.17005MR1808366
  14. Christoph Sorger, La formule de Verlinde, Astérisque (1996), Exp. No. 794, 3, 87-114 Zbl0878.17024MR1423621
  15. Akihiro Tsuchiya, Yukihiro Kanie, Vertex operators in conformal field theory on P 1 and monodromy representations of braid group, Conformal field theory and solvable lattice models (Kyoto, 1986) 16 (1988), 297-372, Academic Press, Boston, MA Zbl0661.17021MR972998
  16. Akihiro Tsuchiya, Kenji Ueno, Yasuhiko Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical mechanics 19 (1989), 459-566, Academic Press, Boston, MA Zbl0696.17010MR1048605
  17. Kenji Ueno, Conformal field theory with gauge symmetry, 24 (2008), American Mathematical Society, Providence, RI; Fields Institute for Research in Mathematical Sciences, Toronto, ON Zbl1188.81004MR2433154
  18. A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, 21 (1995), World Scientific Publishing Co., Inc., River Edge, NJ Zbl0951.33001MR1384760

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.