Newton’s method over global height fields
Xander Faber[1]; Adam Towsley[2]
- [1] Department of Mathematics University of Hawaii Honolulu, HI
- [2] Department of Mathematics CUNY Graduate Center New York, NY
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 2, page 347-362
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topFaber, Xander, and Towsley, Adam. "Newton’s method over global height fields." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 347-362. <http://eudml.org/doc/275682>.
@article{Faber2014,
abstract = {For any field $K$ equipped with a set of pairwise inequivalent absolute values satisfying a product formula, we completely describe the conditions under which Newton’s method applied to a squarefree polynomial $f \in K \left[ x \right]$ will succeed in finding some root of $f$ in the $v$-adic topology for infinitely many places $v$ of $K$. Furthermore, we show that if $K$ is a finite extension of the rationals or of the rational function field over a finite field, then the Newton approximation sequence fails to converge $v$-adically for a positive density of places $v$.},
affiliation = {Department of Mathematics University of Hawaii Honolulu, HI; Department of Mathematics CUNY Graduate Center New York, NY},
author = {Faber, Xander, Towsley, Adam},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Arithmetic Dynamics; Global Height Field; Newton’s Method; Density; arithmetic dynamics; global height field; Newton's method; density},
language = {eng},
month = {10},
number = {2},
pages = {347-362},
publisher = {Société Arithmétique de Bordeaux},
title = {Newton’s method over global height fields},
url = {http://eudml.org/doc/275682},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Faber, Xander
AU - Towsley, Adam
TI - Newton’s method over global height fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 347
EP - 362
AB - For any field $K$ equipped with a set of pairwise inequivalent absolute values satisfying a product formula, we completely describe the conditions under which Newton’s method applied to a squarefree polynomial $f \in K \left[ x \right]$ will succeed in finding some root of $f$ in the $v$-adic topology for infinitely many places $v$ of $K$. Furthermore, we show that if $K$ is a finite extension of the rationals or of the rational function field over a finite field, then the Newton approximation sequence fails to converge $v$-adically for a positive density of places $v$.
LA - eng
KW - Arithmetic Dynamics; Global Height Field; Newton’s Method; Density; arithmetic dynamics; global height field; Newton's method; density
UR - http://eudml.org/doc/275682
ER -
References
top- M. Baker, A finiteness theorem for canonical heights attached to rational maps over function fields, J. Reine Angew. Math., 626, (2009), 205–233. Zbl1187.37133MR2492995
- R. Benedetto, D. Ghioca, B. Hutz, P. Kurlberg, T. Scanlon, and T. Tucker, Periods of rational maps modulo primes, Mathematische Annalen, doi:10.1007/s00208-012-0799-8, (2012), 1–24. Zbl1317.37111MR3010142
- E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, Cambridge, (2006). Zbl1115.11034MR2216774
- G. S. Call and J. H. Silverman, Canonical heights on varieties with morphisms, Compositio Math., 89,2 (1993), 163–205. Zbl0826.14015MR1255693
- P. Corvaja and U. Zannier, Arithmetic on infinite extensions of function fields Boll. Un. Mat. Ital. B (7), 11, 4, (1997), 1021–1038. Zbl0896.11046MR1491742
- X. Faber and A. Granville, Prime factors of dynamical sequences J. Reine Angew. Math., 661, (2011), 189–214. Zbl1290.11019MR2863906
- X. Faber and J. F. Voloch, On the number of places of convergence for Newton’s method over number fields, J. Théor. Nombres Bordeaux, 23,2, (2011), 387–401. Zbl1223.37118MR2817936
- S. Lang, Diophantine geometry, Interscience Tracts in Pure and Applied Mathematics, 11, Interscience Publishers (a division of John Wiley & Sons), New York-London, (1962). Zbl0115.38701MR142550
- K. Nishizawa and M. FujimuraFamilies of rational maps and convergence basins of Newton’s method, Proc. Japan Acad. Ser. A Math. Sci., 68, 6, (1992), 143–147. Zbl0762.58019MR1179387
- J. H. Silverman and J. F. Voloch, A local-global criterion for dynamics on , Acta Arith., 137, 3, (2009), 285–294. Zbl1243.37066MR2496466
- A. Towsley, A Hasse principle for periodic points, Int. J. Number Theory, 9, 8 (2013), 2053–2068. Zbl1281.11100MR3145160
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.