Kato’s Euler system

Shanwen Wang[1]

  • [1] Université Pierre et Marie Curie Institut de Mathématiques de Jussieu 4, Place Jussieu 75005 PARIS, France

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 3, page 677-758
  • ISSN: 1246-7405

Abstract

top
This article is devoted to Kato’s Euler system, which is constructed from modular units, and to its image by the dual exponential map (so-called Kato’s reciprocity law). The presentation in this article is different from Kato’s oringinal one, and the dual exponential map in this article is a modification of Colmez’s construction in his Bourbaki talk.

How to cite

top

Wang, Shanwen. "Le système d’Euler de Kato." Journal de Théorie des Nombres de Bordeaux 25.3 (2013): 677-758. <http://eudml.org/doc/275729>.

@article{Wang2013,
abstract = {Ce texte est consacré au système d’Euler de Kato, construit à partir des unités modulaires, et à son image par l’application exponentielle duale (loi de réciprocité explicite de Kato). La présentation que nous en donnons est sensiblement différente de la présentation originelle de Kato.},
affiliation = {Université Pierre et Marie Curie Institut de Mathématiques de Jussieu 4, Place Jussieu 75005 PARIS, France},
author = {Wang, Shanwen},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Kato's Euler system; modular unit; reciprocity law},
language = {fre},
month = {11},
number = {3},
pages = {677-758},
publisher = {Société Arithmétique de Bordeaux},
title = {Le système d’Euler de Kato},
url = {http://eudml.org/doc/275729},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Wang, Shanwen
TI - Le système d’Euler de Kato
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/11//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 3
SP - 677
EP - 758
AB - Ce texte est consacré au système d’Euler de Kato, construit à partir des unités modulaires, et à son image par l’application exponentielle duale (loi de réciprocité explicite de Kato). La présentation que nous en donnons est sensiblement différente de la présentation originelle de Kato.
LA - fre
KW - Kato's Euler system; modular unit; reciprocity law
UR - http://eudml.org/doc/275729
ER -

References

top
  1. Y. Amice, J. Vélu, Distributions p -adiques associées aux séries de Hecke. (French) Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), 119–131. Astérisque, Nos. 24-25, Soc. Math. France, Paris,1975. Zbl0332.14010MR447195
  2. F. Andreatta, Generalized ring of norms and generalized ( ϕ , Γ ) -modules. Ann. Scient. Éc. Norm. Sup. (4) 39 (2006), 599–647. Zbl1123.13007MR2290139
  3. F. Andreatta, O. Brinon, Surconvergence des représentations p-adiques : le cas relatif. Astérisque 319 (2008), 39–116. Zbl1168.11018MR2493216
  4. F. Andreatta, A. Iovita, Comparison Isomorphisms for smooth formal schemes. Journal of Math. Inst. of Jussieu (à paraître). Zbl1281.14013
  5. F. Cherbonnier, P.Colmez, Théorie d’Iwasawa des représentations p -adiques d’un corps local. J.A.M.S vol. 12 Number 1 (1999), 241–268. Zbl0933.11056MR1626273
  6. P. Colmez, La Conjecture de Birch et Swinnerton-Dyer p-adique. Astérisque 294 (2004). Zbl1094.11025MR2111647
  7. P. Colmez, Théorie d’Iwasawa des représentations de de Rham d’un corps local. Annals of Mathematics, vol 148 (1998), 485–571. Zbl0928.11045MR1668555
  8. P. Colmez, Zéros supplémentaires de fonctions L p -adiques de formes modulaires. Algebra and Number Theory, edited by R. Tandon, Hindustan book agency, 2005, 193–210. Zbl1082.11027MR2193353
  9. P. Deligne, Formes modularies et représentations l -adiques. Sém. Bourbaki, 1968/69, exp. 343, SLN 179 (1971), 139–172. Zbl0206.49901MR3077124
  10. G. Faltings, Almost étale extensions. Astérisque 279 (2002), 185–270. Zbl1027.14011MR1922831
  11. K. Kato, p-adic Hodge theory and values of zeta functions of modular forms. Astérisque 295 (2004). Zbl1142.11336MR2104361
  12. D. Kubert, S. Lang, Units in the modular function fields II. Math. Ann. 218 (1975), 175–189. Zbl0311.14005MR437497
  13. S. Lang, Elliptic functions. With an appendix by J. Tate. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Amsterdam, 1973, xii+326 pp. Zbl0316.14001MR409362
  14. Y. Manin, Periods of cusp forms, and p-adic Hecke series. (Russian) Mat. Sb. (N.S.) 92(134) (1973), 378–401, 503. Zbl0293.14007MR345909
  15. B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves. Invent. Math. 25 (1974), 1–61. Zbl0281.14016MR354674
  16. B. Mazur, J. Tate, J. Teitelbaum, On p -adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84 (1986), no. 1, 1–48. Zbl0699.14028MR830037
  17. T. Miyake, Modular forms. Translated from the 1976 Japanese original by Yoshitaka Maeda. Reprint of the first 1989 English edition. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006, x+335 Zbl1159.11014MR1021004
  18. J.Neukirch, A.Schmidt, K.Wingberg, Cohomology of number fields. Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag, Berlin, 2000. Zbl0948.11001MR1737196
  19. B. Perrin-Riou, Fonctions L p -adiques des représentations p -adiques. Astérique 229 (1995). Zbl0845.11040
  20. A. Robert, A course in p -adic analysis. Graduate Texts in Math.198, Springer-Verlag, 2000. Zbl0947.11035MR1760253
  21. G. Robert, Concernant la relation de distribution satisfaite par la fonction ϕ associée à un réseau complexe. Inventiones Math. 100 (1990), 231–257. Zbl0729.11029MR1047134
  22. K. Rubin, Euler systems. Annals of Mathematics Studies 147, Princeton Univeristy Press,2000. Zbl0977.11001MR1749177
  23. A.J. Scholl, An introduction to Kato’s Euler systems. In : Galois representations in arithmetic algebraic geometry, ed. A. J. Scholl and R. L. Taylor. Cambridge University Press, 1998, 379–460. Zbl0952.11015MR1696501
  24. S. Sen, Lie algebres of Galois group arising from Hodge-Tate modules. Ann. of Math.97 (1973), 160–170. Zbl0258.12009MR314853
  25. G. Shimura, Introduction to the arithmetic theory of automorphic functions. Reprint of the 1971 original. Publications of the Mathematical Society of Japan, 11. Kanô Memorial Lectures, 1. Princeton University Press, Princeton, NJ, 1994, xiv+271. Zbl0872.11023MR1291394
  26. J. Tate, p -divisible groups. Proc. of a conference on local field, Nuffic summer school at Driebergen, Springer, Berlin, 1967,158–183. Zbl0157.27601MR231827
  27. M. Vishik, A non-Archimedean analogue of perturbation theory. (Russian) Dokl. Akad. Nauk SSSR 249 (1979), no. 2, 267–271. Zbl0441.46058MR557758
  28. A. Weil , Elliptic functions according to Eisenstein and Kronecker. Reprint of the 1976 original. Classics in Mathematics. Springer-Verlag, Berlin, 1999, viii+93 pp. Zbl0955.11001MR1723749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.