Generalized ring of norms and generalized ( φ , Γ ) -modules

Fabrizio Andreatta[1]

  • [1] Università La Sapienza, Dipartimento di Matematica - Instituto G. Castelnuovo, Piazzale Aldo Moro 2, 00185 Roma (Italie)

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 4, page 599-647
  • ISSN: 0012-9593

How to cite

top

Andreatta, Fabrizio. "Generalized ring of norms and generalized $(\phi ,\Gamma )$-modules." Annales scientifiques de l'École Normale Supérieure 39.4 (2006): 599-647. <http://eudml.org/doc/82696>.

@article{Andreatta2006,
affiliation = {Università La Sapienza, Dipartimento di Matematica - Instituto G. Castelnuovo, Piazzale Aldo Moro 2, 00185 Roma (Italie)},
author = {Andreatta, Fabrizio},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {field of norms; almost étale},
language = {eng},
number = {4},
pages = {599-647},
publisher = {Elsevier},
title = {Generalized ring of norms and generalized $(\phi ,\Gamma )$-modules},
url = {http://eudml.org/doc/82696},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Andreatta, Fabrizio
TI - Generalized ring of norms and generalized $(\phi ,\Gamma )$-modules
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 4
SP - 599
EP - 647
LA - eng
KW - field of norms; almost étale
UR - http://eudml.org/doc/82696
ER -

References

top
  1. [1] Abrashkin V., An analogue of the-field-of norms functor and of the Grothendieck conjecture, Preprint, 2005. Zbl1135.11064
  2. [2] Atiyah M.F., Macdonald I.G., Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969. Zbl0175.03601MR242802
  3. [3] Cherbonnier F., Colmez P., Représentations p-adiques surconvergentes, Invent. Math.133 (3) (1998) 581-611. Zbl0928.11051MR1645070
  4. [4] Dee J., Φ - Γ -modules for families of Galois representations, J. Algebra235 (2001) 636-664. Zbl0984.11062MR1805474
  5. [5] Eisenbud D., Commutative Algebra. With a View Toward Algebraic Geometry, Graduate Texts in Math., vol. 150, Springer, New York, 1995. Zbl0819.13001MR1322960
  6. [6] Faltings G., p-adic Hodge theory, J. Amer. Math. Soc.1 (1988) 255-299. Zbl0764.14012MR924705
  7. [7] Faltings G., Almost étale extensions, in: Berthelot P., Fontaine J.-M., Illusie L., Kato K., Rapoport M. (Eds.), Cohomologies p-adiques et applications arithmétiques, vol. II, Astérisque, vol. 279, 2002, pp. 185-270. Zbl1027.14011MR1922831
  8. [8] Fontaine J.-M., Wintenberger J.-P., Le “corps des normes” de certaines extensions algébriques des corps locaux, CRAS288 (1979) 367-370. Zbl0475.12020
  9. [9] Fontaine J.-M., Wintenberger J.-P., Extensions algébriques et corps des normes des extensions APF des corps locaux, CRAS288 (1979) 441-444. Zbl0403.12018MR527692
  10. [10] Fontaine J.-M., Représentations p-adiques des corps locaux, in: Cartier P., Illusie L., Katz N.M., Laumon G., Manin Y., Ribet K.A. (Eds.), The Grothendieck Festschrift, vol. II, Progress in Math., vol. 87, Birkhäuser, Basel, 1991, pp. 249-309. Zbl0743.11066MR1106901
  11. [11] Grothendieck A., Dieudonné J., Éléments de géométrie algébrique, Publ. Math. IHÉS20, 24 (1964–1965). Zbl0203.23301
  12. [12] Katz N., P-adic properties of modular schemes and modular forms, in: Modular functions of one variable III, Lecture Notes in Math., vol. 350, Springer, Berlin, 1973, pp. 69-190. Zbl0271.10033MR447119
  13. [13] Matsumura H., Commutative Algebra, W.A. Benjamin, New York, 1970. Zbl0211.06501MR266911
  14. [14] SchollA.J., Higher fields of norms and ( φ , Γ ) -modules,Documenta Mathematica, in press. Zbl1186.11070
  15. [15] Serre J.-P., Corps locaux, Hermann, Paris, 1962. Zbl0137.02601MR354618
  16. [16] Tate J., p-divisible groups, in: Springer T.A. (Ed.), Proc. Conf. Local Fields, Driebergen, 1966, Springer, Berlin, 1967, pp. 158-183. Zbl0157.27601MR231827
  17. [17] Wintenberger J.-P., Le corps des normes de certaines extensions infinies des corps locaux; applications, Ann. Sci. ENS16 (1983) 59-89. Zbl0516.12015MR719763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.