Sharp polynomial energy decay for locally undamped waves

Matthieu Léautaud[1]; Nicolas Lerner[2]

  • [1] Institut de Mathématiques de Jussieu-Paris Rive Gauche Université Paris Diderot (Paris VII) Bâtiment Sophie Germain 75205 Paris Cedex 13 France
  • [2] Institut de Mathématiques de Jussieu-Paris Rive Gauche Université Pierre et Marie Curie (Paris VI) 4 Place Jussieu 75252 Paris cedex 05 France

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • page 1-13
  • ISSN: 2266-0607

Abstract

top
In this note, we present the results of the article [LL14], and provide a complete proof in a simple case. We study the decay rate for the energy of solutions of a damped wave equation in a situation where the Geometric Control Condition is violated. We assume that the set of undamped trajectories is a flat torus of positive codimension and that the metric is locally flat around this set. We further assume that the damping function enjoys locally a prescribed homogeneity near the undamped set in traversal directions. We prove a sharp decay estimate at a polynomial rate that depends on the homogeneity of the damping function.

How to cite

top

Léautaud, Matthieu, and Lerner, Nicolas. "Sharp polynomial energy decay for locally undamped waves." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-13. <http://eudml.org/doc/275768>.

@article{Léautaud2014-2015,
abstract = {In this note, we present the results of the article [LL14], and provide a complete proof in a simple case. We study the decay rate for the energy of solutions of a damped wave equation in a situation where the Geometric Control Condition is violated. We assume that the set of undamped trajectories is a flat torus of positive codimension and that the metric is locally flat around this set. We further assume that the damping function enjoys locally a prescribed homogeneity near the undamped set in traversal directions. We prove a sharp decay estimate at a polynomial rate that depends on the homogeneity of the damping function.},
affiliation = {Institut de Mathématiques de Jussieu-Paris Rive Gauche Université Paris Diderot (Paris VII) Bâtiment Sophie Germain 75205 Paris Cedex 13 France; Institut de Mathématiques de Jussieu-Paris Rive Gauche Université Pierre et Marie Curie (Paris VI) 4 Place Jussieu 75252 Paris cedex 05 France},
author = {Léautaud, Matthieu, Lerner, Nicolas},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-13},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sharp polynomial energy decay for locally undamped waves},
url = {http://eudml.org/doc/275768},
year = {2014-2015},
}

TY - JOUR
AU - Léautaud, Matthieu
AU - Lerner, Nicolas
TI - Sharp polynomial energy decay for locally undamped waves
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 13
AB - In this note, we present the results of the article [LL14], and provide a complete proof in a simple case. We study the decay rate for the energy of solutions of a damped wave equation in a situation where the Geometric Control Condition is violated. We assume that the set of undamped trajectories is a flat torus of positive codimension and that the metric is locally flat around this set. We further assume that the damping function enjoys locally a prescribed homogeneity near the undamped set in traversal directions. We prove a sharp decay estimate at a polynomial rate that depends on the homogeneity of the damping function.
LA - eng
UR - http://eudml.org/doc/275768
ER -

References

top
  1. N. Anantharaman and M. Léautaud, Sharp polynomial decay rates for the damped wave equation on the torus, Anal. PDE 7 (2014), no. 1, 159–214. Zbl1295.35075MR3219503
  2. N. Anantharaman and F. Macià, Semiclassical measures for the Schrödinger equation on the torus, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1253–1288. Zbl1298.42028MR3226742
  3. C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ. 8 (2008), no. 4, 765–780. Zbl1185.47043MR2460938
  4. N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 749–752. Zbl0906.93008MR1483711
  5. N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett. 14 (2007), no. 1, 35–47. Zbl1122.35015MR2289618
  6. J.-M. Bony and N. Lerner, Quantification asymptotique et microlocalisations d’ordre supérieur. I, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 3, 377–433. Zbl0753.35005MR1011988
  7. C. Bardos, G. Lebeau, and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques, Rend. Sem. Mat. Univ. Politec. Torino (1988), no. Special Issue, 11–31 (1989), Nonlinear hyperbolic equations in applied sciences. Zbl0673.93037MR1007364
  8. J.-M. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press, Boston, MA, 1986, pp. 11–49. Zbl0669.35073MR925240
  9. A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann. 347 (2010), no. 2, 455–478. Zbl1185.47044MR2606945
  10. N. Burq and C. Zuily, Laplace eigenfunctions and damped wave equation ii : product manifolds, preprint, http://arxiv.org/abs/1503.05513 (2015). Zbl1331.58033
  11. E. B. Davies, Pseudo-spectra, the harmonic oscillator and complex resonances, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1982, 585–599. Zbl0931.70016MR1700903
  12. J.-M. Delort, F.B.I. transformation, Lecture Notes in Mathematics, vol. 1522, Springer-Verlag, Berlin, 1992, Second microlocalization and semilinear caustics. Zbl0760.35004MR1186645
  13. W. Deng, Personal communication, 2012. 
  14. C. Fermanian-Kammerer, Mesures semi-classiques 2-microlocales, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 7, 515–518. Zbl0964.35009MR1794090
  15. —, Analyse à deux échelles d’une suite bornée de L 2 sur une sous-variété du cotangent, C. R. Math. Acad. Sci. Paris 340 (2005), no. 4, 269–274. MR2121889
  16. C. Fermanian-Kammerer and P. Gérard, Mesures semi-classiques et croisement de modes, Bull. Soc. Math. France 130 (2002), no. 1, 123–168. Zbl0996.35004MR1906196
  17. M. Kashiwara and T. Kawai, Second-microlocalization and asymptotic expansions, Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lecture Notes in Phys., vol. 126, Springer, Berlin-New York, 1980, pp. 21–76. Zbl0458.46027MR579740
  18. G. Lebeau, Deuxième microlocalisation sur les sous-variétés isotropes, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 2, 145–216. Zbl0539.58038MR786539
  19. —, Control for hyperbolic equations, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1992), École Polytech., Palaiseau, 1992, p. 24. MR1191928
  20. —, Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73–109. 
  21. N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators. Theory and Applications, vol. 3, Birkhäuser Verlag, Basel, 2010. Zbl1186.47001MR2599384
  22. M. Léautaud and N. Lerner, Energy decay for a locally undamped wave equation, submitted, http://arxiv.org/abs/1411.7271 (2014). 
  23. Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys. 56 (2005), no. 4, 630–644. Zbl1100.47036MR2185299
  24. F. Macià, High-frequency propagation for the Schrödinger equation on the torus, J. Funct. Anal. 258 (2010), no. 3, 933–955. Zbl1180.35438MR2558183
  25. L. Miller, Short waves through thin interfaces and 2-microlocal measures, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1997), École Polytech., Palaiseau, 1997, pp. Exp. No. XII, 12. Zbl1005.35077MR1482278
  26. K.-D. Phung, Polynomial decay rate for the dissipative wave equation, J. Differential Equations 240 (2007), no. 1, 92–124. Zbl1130.35017MR2349166
  27. Karel Pravda-Starov, A complete study of the pseudo-spectrum for the rotated harmonic oscillator, J. London Math. Soc. (2) 73 (2006), no. 3, 745–761. Zbl1106.34060MR2241978
  28. J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24 (1974), 79–86. Zbl0281.35012MR361461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.