An explicit computation of -stabilized vectors
Michitaka MIYAUCHI[1]; Takuya YAMAUCHI[2]
- [1] Faculty of Liberal Arts and Sciences Osaka Prefecture University 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, JAPAN
- [2] Department of mathematics, Faculty of Education Kagoshima University Korimoto 1-20-6 Kagoshima 890-0065, JAPAN and Department of mathematics University of Toronto Toronto, Ontario M5S 2E4, CANADA
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 2, page 531-558
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMIYAUCHI, Michitaka, and YAMAUCHI, Takuya. "An explicit computation of $p$-stabilized vectors." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 531-558. <http://eudml.org/doc/275805>.
@article{MIYAUCHI2014,
abstract = {In this paper, we give a concrete method to compute $p$-stabilized vectors in the space of parahori-fixed vectors for connected reductive groups over $p$-adic fields. An application to the global setting is also discussed. In particular, we give an explicit $p$-stabilized form of a Saito-Kurokawa lift.},
affiliation = {Faculty of Liberal Arts and Sciences Osaka Prefecture University 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, JAPAN; Department of mathematics, Faculty of Education Kagoshima University Korimoto 1-20-6 Kagoshima 890-0065, JAPAN and Department of mathematics University of Toronto Toronto, Ontario M5S 2E4, CANADA},
author = {MIYAUCHI, Michitaka, YAMAUCHI, Takuya},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {10},
number = {2},
pages = {531-558},
publisher = {Société Arithmétique de Bordeaux},
title = {An explicit computation of $p$-stabilized vectors},
url = {http://eudml.org/doc/275805},
volume = {26},
year = {2014},
}
TY - JOUR
AU - MIYAUCHI, Michitaka
AU - YAMAUCHI, Takuya
TI - An explicit computation of $p$-stabilized vectors
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 531
EP - 558
AB - In this paper, we give a concrete method to compute $p$-stabilized vectors in the space of parahori-fixed vectors for connected reductive groups over $p$-adic fields. An application to the global setting is also discussed. In particular, we give an explicit $p$-stabilized form of a Saito-Kurokawa lift.
LA - eng
UR - http://eudml.org/doc/275805
ER -
References
top- A. N. Andrianov, Quadratic forms and Hecke operators, Springer Berlin (1987). Zbl0613.10023MR884891
- S. Böcherer, Siegfried On the Hecke operator . With an appendix by Ralf Schmidt. J. Math. Kyoto Univ. 45, 4 (2005), 807–829. Zbl1114.11044MR2226631
- A. Borel, Automorphic L -functions. Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I.,(1979) 27–61. Zbl0412.10017MR546608
- A. Borel and H. Jacquet, Automorphic forms and automorphic representations. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, 189–207. Zbl0414.22020MR546598
- C. J. Bushnell and P. C. Kutzko, Smooth representations of reductive p -adic groups: structure theory via types. Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. Zbl0911.22014MR1643417
- W. Casselman, Introduction to admissible representations of -adic groups, available at his homepage.
- Robert F. Coleman, Classical and overconvergent modular forms. Invent. Math. 124, 1-3 (1996), 215–241. Zbl0851.11030MR1369416
- P. Garrett, Representations with Iwahori-fixed vectors. Note available at his homepage http://www.math.umn.edu/~garrett/m/v/.
- M. Goresky, Compactifications and cohomology of modular varieties. Harmonic analysis, the trace formula, and Shimura varieties, , Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, (2005), 551–582. Zbl1158.14306MR2192016
- R. HoweHarish-Chandra homomorphisms for -adic groups, 59 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, (1985). With the collaboration of A. Moy. Zbl0593.22014MR821216
- T. Ibukiyama, Saito-Kurokawa liftings of level N and practical construction of Jacobi forms, Kyoto J. Math. 52, 1 (2012), 141–178. Zbl1284.11085MR2892771
- H. Jacquet, Sur les représentations des groupes réductifs -adiques, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), Aii, A1271–A1272. Zbl0309.22012MR369624
- D. Keys, Principal series representations of special unitary groups over local fields, Compositio Math. 51, 1 (1984), 115–130. Zbl0547.22009MR734788
- B. Mazur, An “infinite fern” in the universal deformation space of Galois representations, Collect. Math., 48, 1-2 (1997), 155–193. Journées Arithmétiques (Barcelona, 1995). Zbl0865.11046MR1464022
- J. S. Milne, Introduction to Shimura varieties. In Harmonic analysis, the trace formula, and Shimura varieties, 4 of Clay Math. Proc., (2005) 265–378. Amer. Math. Soc., Providence, RI. Zbl1148.14011MR2192012
- B. Roberts and R. Schmidt, Local newforms for . Lecture Notes in Mathematics, 1918, Springer, Berlin, (2007), viii+307 pp. Zbl1126.11027MR2344630
- R. Salvati Manni and J. Top, Cusp forms of weight 2 for the group , Amer. J. Math. 115, (1993), 455–486. Zbl0780.11024MR1216438
- I. Satake, Algebraic structures of symmetric domains Kano Memorial Lectures, 4. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., (1980). xvi+321 pp. Zbl0483.32017MR591460
- G. Shimura, Introduction to the arithmetic theory of automorphic functions, Reprint of the 1971 original. Publications of the Mathematical Society of Japan, 11, Kano Memorial Lectures, 1. Princeton University Press, Princeton, NJ, (1994). Zbl0872.11023MR1291394
- C. Skinner and E. Urban, Sur les déformations -adiques de certaines représentations automorphes. J. Inst. Math. Jussieu 5, 4 (2006), 629–698. Zbl1169.11314MR2261226
- J. Tilouine, Nearly ordinary rank four Galois representations and -adic Siegel modular forms. With an appendix by Don Blasius. Compos. Math. 142, 5 (2006), 1122–1156. Zbl1159.11018MR2264659
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.