An explicit computation of p -stabilized vectors

Michitaka MIYAUCHI[1]; Takuya YAMAUCHI[2]

  • [1] Faculty of Liberal Arts and Sciences Osaka Prefecture University 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, JAPAN
  • [2] Department of mathematics, Faculty of Education Kagoshima University Korimoto 1-20-6 Kagoshima 890-0065, JAPAN and Department of mathematics University of Toronto Toronto, Ontario M5S 2E4, CANADA

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 2, page 531-558
  • ISSN: 1246-7405

Abstract

top
In this paper, we give a concrete method to compute p -stabilized vectors in the space of parahori-fixed vectors for connected reductive groups over p -adic fields. An application to the global setting is also discussed. In particular, we give an explicit p -stabilized form of a Saito-Kurokawa lift.

How to cite

top

MIYAUCHI, Michitaka, and YAMAUCHI, Takuya. "An explicit computation of $p$-stabilized vectors." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 531-558. <http://eudml.org/doc/275805>.

@article{MIYAUCHI2014,
abstract = {In this paper, we give a concrete method to compute $p$-stabilized vectors in the space of parahori-fixed vectors for connected reductive groups over $p$-adic fields. An application to the global setting is also discussed. In particular, we give an explicit $p$-stabilized form of a Saito-Kurokawa lift.},
affiliation = {Faculty of Liberal Arts and Sciences Osaka Prefecture University 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, JAPAN; Department of mathematics, Faculty of Education Kagoshima University Korimoto 1-20-6 Kagoshima 890-0065, JAPAN and Department of mathematics University of Toronto Toronto, Ontario M5S 2E4, CANADA},
author = {MIYAUCHI, Michitaka, YAMAUCHI, Takuya},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {10},
number = {2},
pages = {531-558},
publisher = {Société Arithmétique de Bordeaux},
title = {An explicit computation of $p$-stabilized vectors},
url = {http://eudml.org/doc/275805},
volume = {26},
year = {2014},
}

TY - JOUR
AU - MIYAUCHI, Michitaka
AU - YAMAUCHI, Takuya
TI - An explicit computation of $p$-stabilized vectors
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 531
EP - 558
AB - In this paper, we give a concrete method to compute $p$-stabilized vectors in the space of parahori-fixed vectors for connected reductive groups over $p$-adic fields. An application to the global setting is also discussed. In particular, we give an explicit $p$-stabilized form of a Saito-Kurokawa lift.
LA - eng
UR - http://eudml.org/doc/275805
ER -

References

top
  1. A. N. Andrianov, Quadratic forms and Hecke operators, Springer Berlin (1987). Zbl0613.10023MR884891
  2. S. Böcherer, Siegfried On the Hecke operator U ( p ) . With an appendix by Ralf Schmidt. J. Math. Kyoto Univ. 45, 4 (2005), 807–829. Zbl1114.11044MR2226631
  3. A. Borel, Automorphic L -functions. Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I.,(1979) 27–61. Zbl0412.10017MR546608
  4. A. Borel and H. Jacquet, Automorphic forms and automorphic representations. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, 189–207. Zbl0414.22020MR546598
  5. C. J. Bushnell and P. C. Kutzko, Smooth representations of reductive p -adic groups: structure theory via types. Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. Zbl0911.22014MR1643417
  6. W. Casselman, Introduction to admissible representations of p -adic groups, available at his homepage. 
  7. Robert F. Coleman, Classical and overconvergent modular forms. Invent. Math. 124, 1-3 (1996), 215–241. Zbl0851.11030MR1369416
  8. P. Garrett, Representations with Iwahori-fixed vectors. Note available at his homepage http://www.math.umn.edu/~garrett/m/v/. 
  9. M. Goresky, Compactifications and cohomology of modular varieties. Harmonic analysis, the trace formula, and Shimura varieties, , Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, (2005), 551–582. Zbl1158.14306MR2192016
  10. R. HoweHarish-Chandra homomorphisms for p -adic groups, 59 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, (1985). With the collaboration of A. Moy. Zbl0593.22014MR821216
  11. T. Ibukiyama, Saito-Kurokawa liftings of level N and practical construction of Jacobi forms, Kyoto J. Math. 52, 1 (2012), 141–178. Zbl1284.11085MR2892771
  12. H. Jacquet, Sur les représentations des groupes réductifs p -adiques, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), Aii, A1271–A1272. Zbl0309.22012MR369624
  13. D. Keys, Principal series representations of special unitary groups over local fields, Compositio Math. 51, 1 (1984), 115–130. Zbl0547.22009MR734788
  14. B. Mazur, An “infinite fern” in the universal deformation space of Galois representations, Collect. Math., 48, 1-2 (1997), 155–193. Journées Arithmétiques (Barcelona, 1995). Zbl0865.11046MR1464022
  15. J. S. Milne, Introduction to Shimura varieties. In Harmonic analysis, the trace formula, and Shimura varieties, 4 of Clay Math. Proc., (2005) 265–378. Amer. Math. Soc., Providence, RI. Zbl1148.14011MR2192012
  16. B. Roberts and R. Schmidt, Local newforms for G S p ( 4 ) . Lecture Notes in Mathematics, 1918, Springer, Berlin, (2007), viii+307 pp. Zbl1126.11027MR2344630
  17. R. Salvati Manni and J. Top, Cusp forms of weight 2 for the group Γ ( 4 , 8 ) , Amer. J. Math. 115, (1993), 455–486. Zbl0780.11024MR1216438
  18. I. Satake, Algebraic structures of symmetric domains Kano Memorial Lectures, 4. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., (1980). xvi+321 pp. Zbl0483.32017MR591460
  19. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Reprint of the 1971 original. Publications of the Mathematical Society of Japan, 11, Kano Memorial Lectures, 1. Princeton University Press, Princeton, NJ, (1994). Zbl0872.11023MR1291394
  20. C. Skinner and E. Urban, Sur les déformations p -adiques de certaines représentations automorphes. J. Inst. Math. Jussieu 5, 4 (2006), 629–698. Zbl1169.11314MR2261226
  21. J. Tilouine, Nearly ordinary rank four Galois representations and p -adic Siegel modular forms. With an appendix by Don Blasius. Compos. Math. 142, 5 (2006), 1122–1156. Zbl1159.11018MR2264659

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.