Principal series representations of special unitary groups over local fields
Compositio Mathematica (1984)
- Volume: 51, Issue: 1, page 115-130
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] W. Casselman: Introduction to the Theory of Admissible Representations of p-adic Reductive Groups, to appear.
- [2] W. Casselman: The unramified principal series of p-adic groups, I. The spherical function. Comp. Math.40 (3) (1980) 387-406. Zbl0472.22004MR571057
- [3] D. Keys: On the decomposition of reducible principal series representations of p-adic Chevalley groups. Pacific J. Math.101 (1982) 351-388. Zbl0438.22010MR675406
- [4] D. Keys: Reducibility of unramified unitary principal series representations of p-adic groups and class-1 representations. Math. Annalen260 (1982) 397-402. Zbl0488.22026MR670188
- [5] A.W. Knapp and E.M. Stein: Intertwining operators for semi-simple groups, II. Invent. Math.60 (1980) 9-84. Zbl0454.22010MR582703
- [6] P.J. Sally and M.H. Taibleson: Special functions on locally compact fields. Acta Math.116 (1966) 279-309. Zbl0173.07005MR206349
- [7] F. Rodier: Models de Whittaker et characteres de representations. In: Lecture Notes in Math.466, Non-Commutative Harmonic Analysis, Springer-Verlag (1975), pp. 151-171. Zbl0339.22014MR393355
- [8] F. Shahidi: On certain L-functions. Amer. J. Math.103 (2) (1981) 297-355. Zbl0467.12013MR610479
- [9] A. Silberger: Introduction to harmonic analysis on reductive p-adic groups (based on lectures by Harish-Chandra at IAS). Math Notes no.23, Princeton University Press, N.J. (1979). Zbl0458.22006MR544991
- [10] A. Silberger: The Knapp-Stein dimension theorem for p-adic groups. Proc. Amer. Math. Soc.68 (1978) 243-246, and "Correction", 76 (1979) 169-170. Zbl0415.22020MR492091
- [11] A. Silberger: Special representations reductive p-adic groups are not integrable. Ann. Math.111 (1980) 571-587. Zbl0437.22015MR577138
Citations in EuDML Documents
top- Michitaka MIYAUCHI, Takuya YAMAUCHI, An explicit computation of -stabilized vectors
- David C. Keys, -indistinguishability and -groups for quasisplit groups : unitary groups in even dimension
- C. David Keys, Freydoon Shahidi, Artin -functions and normalization of intertwining operators
- Joël Bellaïche, Gaëtan Chenevier, Formes non tempérées pour et conjectures de Bloch–Kato