Mean-field evolution of fermionic systems
Séminaire Laurent Schwartz — EDP et applications (2014-2015)
- Volume: 331, Issue: 3, page 1-13
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topPorta, Marcello. "Mean-field evolution of fermionic systems." Séminaire Laurent Schwartz — EDP et applications 331.3 (2014-2015): 1-13. <http://eudml.org/doc/275807>.
@article{Porta2014-2015,
abstract = {We study the dynamics of interacting fermionic systems, in the mean-field regime. We consider initial states which are close to quasi-free states and prove that, under suitable assumptions on the inital data and on the many-body interaction, the quantum evolution of the system is approximated by a time-dependent quasi-free state. In particular we prove that the evolution of the reduced one-particle density matrix converges, as the number of particles goes to infinity, to the solution of the time-dependent Hartree-Fock equation. Our theorems allow to describe the dynamics of both pure states (zero temperature states) and mixed states (positive temperature states). Our results hold for all times, and give effective estimates on the rate of convergence towards the Hartree-Fock evolution. The results on pure states are based on joint works with N. Benedikter and B. Schlein, [5, 6]; while those on mixed states are based on a joint work with N. Benedikter, V. Jaksic, C. Saffirio and B. Schlein, [7].},
author = {Porta, Marcello},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {fermionic systems; Hamiltonian; Hilbert space; Hartree dynamics; Schrödinger equation; Hartree-Fock equation; initial data; solution},
language = {eng},
number = {3},
pages = {1-13},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Mean-field evolution of fermionic systems},
url = {http://eudml.org/doc/275807},
volume = {331},
year = {2014-2015},
}
TY - JOUR
AU - Porta, Marcello
TI - Mean-field evolution of fermionic systems
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 331
IS - 3
SP - 1
EP - 13
AB - We study the dynamics of interacting fermionic systems, in the mean-field regime. We consider initial states which are close to quasi-free states and prove that, under suitable assumptions on the inital data and on the many-body interaction, the quantum evolution of the system is approximated by a time-dependent quasi-free state. In particular we prove that the evolution of the reduced one-particle density matrix converges, as the number of particles goes to infinity, to the solution of the time-dependent Hartree-Fock equation. Our theorems allow to describe the dynamics of both pure states (zero temperature states) and mixed states (positive temperature states). Our results hold for all times, and give effective estimates on the rate of convergence towards the Hartree-Fock evolution. The results on pure states are based on joint works with N. Benedikter and B. Schlein, [5, 6]; while those on mixed states are based on a joint work with N. Benedikter, V. Jaksic, C. Saffirio and B. Schlein, [7].
LA - eng
KW - fermionic systems; Hamiltonian; Hilbert space; Hartree dynamics; Schrödinger equation; Hartree-Fock equation; initial data; solution
UR - http://eudml.org/doc/275807
ER -
References
top- H. Araki and W. Wyss. Representations of canonical anticommutation relations. Helv. Phys. Acta37 (1964), 136. Zbl0137.23903MR171521
- A. Athanassoulis, T. Paul, F. Pezzotti and M. Pulvirenti. Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Atti della Accademia Nazionale dei Lincei. Rendiconti Lincei. Matematica e Applicazioni.22, 525–552 (2011). Zbl1235.81100MR2904998
- V. Bach. Error bound for the Hartree-Fock energy of atoms and molecules. Comm. Math. Phys.147 (1992), no. 3, 527–548. Zbl0771.46038MR1175492
- C. Bardos, F. Golse, A. D. Gottlieb, and N. J. Mauser. Mean field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl. (9)82 (2003), no. 6, 665–683. Zbl1029.82022MR1996777
- N. Benedikter, M. Porta and B. Schlein. Mean-field evolution of fermionic systems. Comm. Math. Phys.331, 1087–1131 (2014). Zbl1304.82061MR3248060
- N. Benedikter, M. Porta and B. Schlein. Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys.55, 021901 (2014). Zbl1286.81183MR3202863
- N. Benedikter, V. Jakšić, M. Porta, C. Saffirio and B. Schlein. Mean-field evolution of fermionic mixed states. http://arxiv.org/abs/1411.0843
- W. Braun and K. Hepp. The Vlasov dynamics and its fluctuations in the limit of interacting classical particles. Comm. Math. Phys.56, 101–113 (1977). Zbl1155.81383MR475547
- J. Derezinśki and C. Gérard. Mathematics of quantization and quantum fields. Cambridge University press (2013). Zbl1271.81004MR3060648
- A. Elgart, L. Erdős, B. Schlein, and H.-T. Yau. Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9)83 (2004), no. 10, 1241–1273. Zbl1059.81190MR2092307
- L. Erdős, B. Schlein, and H.-T. Yau. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Inv. Math.167 (2006), 515–614. Zbl1123.35066MR2276262
- J. Fröhlich and A. Knowles. A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys.145 (2011), no. 1, 23–50. Zbl1269.82042MR2841931
- J. Fröhlich and E. Lenzmann. Dynamical collapse of white dwarfs in Hartree- and Hartree-Fock theory. Comm. Math. Phys.274 (2007), 737–750. Zbl1130.85004MR2328910
- G. M. Graf and J. P. Solovej. A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys.6 (1994), 977–997. Zbl0843.47041MR1301362
- C. Hainzl and B. Schlein. Stellar collapse in the time-dependent Hartree-Fock approximation. Comm. Math. Phys.287 (2009), 705–717. Zbl1175.85002MR2481756
- O. E. Lanford III. The evolution of large classical system. Dynamical Systems, theory and applications. Lecture Notes in Physics38, 1–111 (1975). Zbl0329.70011MR479206
- E. H. Lieb, R. Seiringer, J. .P. Solovej and J. Yngvason. The mathematics of the Bose gas and its condensation. Oberwolfach seminars34, Birkhäuser (2005). Zbl1104.82012MR2143817
- E. H. Lieb and B. Simon. The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math.23, 22–116 (1977). Zbl0938.81568MR428944
- P. L. Lions and T. Paul. Sur les mesures de Wigner. Revista matemática iberoamericana9, 553–618 (1993). Zbl0801.35117MR1251718
- P. A. Markowich and N. J. Mauser. The classical limit of a self-consistent quantum-Vlasov equation in 3D. Mathematical Models and Methods in Applied Sciences3, 109 (1993). Zbl0772.35061MR1203274
- H. Narnhofer and G. L. Sewell. Vlasov hydrodynamics of a quantum mechanical model. Comm. Math. Phys.79 (1981), no. 1, 9–24. MR609224
- S. Petrat and P. Pickl. A New Method and a New Scaling For Deriving Fermionic Mean-field Dynamics. http://arxiv.org/abs/1409.0480
- J. P. Solovej. Many Body Quantum Mechanics. Lecture Notes. Summer 2007. Available at http://www.mathematik.uni-muenchen.de/~sorensen/Lehre/SoSe2013/MQM2/skript.pdf
- H. Spohn. On the Vlasov hierarchy, Math. Methods Appl. Sci.3 (1981), no. 4, 445–455. Zbl0492.35067MR657065
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.