Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control

Kun-Yi Yang; Ling-Li Zhang; Jie Zhang

Kybernetika (2015)

  • Volume: 51, Issue: 6, page 1084-1100
  • ISSN: 0023-5954

Abstract

top
This paper considers a three-dimensional energy demand-supply system which typically demonstrates the relationship between the amount of energy supply and that of energy demand for the two regions in China. A delayed feedback controller is proposed to stabilize the system which was originally unstable even under some other controllers. The stability properties of the equilibrium points are subsequently analyzed and it is found that the Hopf bifurcation appears under some conditions. By using the center manifold theorem and normal form method, we obtain the explicit formulae revealing the properties of the periodic solutions of Hopf bifurcation to show stabilizing effects of the delayed feedback controller. Numerical simulations illustrate effectiveness of our results.

How to cite

top

Yang, Kun-Yi, Zhang, Ling-Li, and Zhang, Jie. "Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control." Kybernetika 51.6 (2015): 1084-1100. <http://eudml.org/doc/276256>.

@article{Yang2015,
abstract = {This paper considers a three-dimensional energy demand-supply system which typically demonstrates the relationship between the amount of energy supply and that of energy demand for the two regions in China. A delayed feedback controller is proposed to stabilize the system which was originally unstable even under some other controllers. The stability properties of the equilibrium points are subsequently analyzed and it is found that the Hopf bifurcation appears under some conditions. By using the center manifold theorem and normal form method, we obtain the explicit formulae revealing the properties of the periodic solutions of Hopf bifurcation to show stabilizing effects of the delayed feedback controller. Numerical simulations illustrate effectiveness of our results.},
author = {Yang, Kun-Yi, Zhang, Ling-Li, Zhang, Jie},
journal = {Kybernetika},
keywords = {a three-dimensional energy demand-supply system; stability; equilibrium point; delayed feedback control; Hopf bifurcation},
language = {eng},
number = {6},
pages = {1084-1100},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control},
url = {http://eudml.org/doc/276256},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Yang, Kun-Yi
AU - Zhang, Ling-Li
AU - Zhang, Jie
TI - Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 6
SP - 1084
EP - 1100
AB - This paper considers a three-dimensional energy demand-supply system which typically demonstrates the relationship between the amount of energy supply and that of energy demand for the two regions in China. A delayed feedback controller is proposed to stabilize the system which was originally unstable even under some other controllers. The stability properties of the equilibrium points are subsequently analyzed and it is found that the Hopf bifurcation appears under some conditions. By using the center manifold theorem and normal form method, we obtain the explicit formulae revealing the properties of the periodic solutions of Hopf bifurcation to show stabilizing effects of the delayed feedback controller. Numerical simulations illustrate effectiveness of our results.
LA - eng
KW - a three-dimensional energy demand-supply system; stability; equilibrium point; delayed feedback control; Hopf bifurcation
UR - http://eudml.org/doc/276256
ER -

References

top
  1. Chen, L., Han, Z. Z., A survey on time-delayed feedback control for chaotic systems., Control Decision 19 (2004), 1-6. MR2034040
  2. Huang, C. F., Cheng, K. H., Yan, J. J., 10.1016/j.cnsns.2008.09.017, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2784-2792. DOI10.1016/j.cnsns.2008.09.017
  3. Lei, A. Z., Ji, L., Xu, W. G., 10.1016/j.apm.2007.12.001, Applied Math. Modelling 33 (2009), 677-682. DOI10.1016/j.apm.2007.12.001
  4. Ott, E., Grebogi, C., Yorke, Y. A., 10.1103/physrevlett.64.1196, Physical Rev. Lett. 64 (1990), 1196-1199. Zbl0964.37502MR1041523DOI10.1103/physrevlett.64.1196
  5. Ruan, S. G., Wei, J. J., On the zeros of transcendental functions with applications to stability of delay differential equations with two delays., Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 10 (2003), 863-874. Zbl1068.34072MR2008751
  6. Sun, M., Tian, L. X., 10.1016/j.chaos.2005.10.085, Chaos, Solitons and Fractals 32 (2007), 168-180. Zbl1133.91524MR2271110DOI10.1016/j.chaos.2005.10.085
  7. Sun, M., Tian, L. X., Fu, Y., Wei, Q., 10.1016/j.chaos.2005.10.035, Chaos, Solitons and Fractals 31 (2007), 879-888. Zbl1149.34032MR2262183DOI10.1016/j.chaos.2005.10.035
  8. Sun, M., Tian, L. X., Jia, Q., 10.1016/j.chaos.2007.06.117, Chaos, Solitons and Fractals 39 (2009), 1943-1949. Zbl1197.93100DOI10.1016/j.chaos.2007.06.117
  9. Sun, M., Tian, L. X., Yin, J., Hopf bifurcation analysis of the energy resource chaotic system., Int. J. Nonlinear Sci. 1 (2006), 49-53. MR2299989
  10. Sun, M., Wang, X. F., Chen, Y., Tian, L. X., 10.1016/j.energy.2011.07.036, Energy 36 (2011), 5460-5465. DOI10.1016/j.energy.2011.07.036
  11. Sun, M., Tian, L. X., Xu, J., 10.1016/j.chaos.2005.12.008, Chaos, Solitons and Fractals 32 (2007), 1725-1734. Zbl1129.93403MR2299087DOI10.1016/j.chaos.2005.12.008
  12. Sun, M., Tian, L. X., Zeng, C. Y., 10.1016/j.nonrwa.2008.04.019, Nonlinear Analysis: Real World Appl. 10 (2009), 2620-2626. Zbl1163.34308MR2508472DOI10.1016/j.nonrwa.2008.04.019
  13. Sun, Z. K., Xu, W., Yang, X. L., Fang, T., 10.1016/j.chaos.2005.04.041, Chaos, Solitons and Fractals 27 (2006), 705-714. Zbl1091.93008DOI10.1016/j.chaos.2005.04.041
  14. Tian, Y. Q., Zhu, J. D., Chen, G. R., 10.1007/s11768-005-0018-1, J. Control Theory Appl. 3 (2005), 311-319. Zbl1284.93113MR2229964DOI10.1007/s11768-005-0018-1
  15. Wang, Z. L., 10.1016/j.nonrwa.2009.11.026, Nonlinear Analysis: Real World Appl. 11 (2010), 3336-3343. Zbl1216.34061MR2683793DOI10.1016/j.nonrwa.2009.11.026
  16. Wang, L. J., Chen, X. M., Sun, M., Tian, L X., Stability of the energy supply-demand stochastic system., Mathematics in Practice and Theory 42 (2012), 105-111. 
  17. Wang, M. G., Tian, L. X., A new four-dimensional energy-saving andemission-reduction system and its linear feedback control., J. Systems Sci. Math. Sci. 32 (2012), 811-820. MR3056150
  18. Wang, Z., Hu, H. Y., 10.1006/jsvi.1999.2817, J. Sound Vibration 233 (2000), 215-233. Zbl1237.93159MR1762567DOI10.1006/jsvi.1999.2817
  19. Wang, X., Zhang, F. Q., Zhang, Y. J., Hopf bifurcation of three species system with time delays., J. Systems Sci. Math. Sci. 30 (2010), 530-540. MR2771905
  20. Wei, J. J., Wang, H. B., Jiang, W. H., Theory and Application of Delay Differential Equations., Sciences Press, Beijing 2012. 
  21. Xin, B. G., Chen, T., Liu, Y. Q., 10.1016/j.cnsns.2011.01.021, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 4479-4486. Zbl1222.93108MR2806760DOI10.1016/j.cnsns.2011.01.021
  22. Xu, C. J., Liao, M. X., He, X. F., 10.2478/v10006-011-0007-0, Int. J. Appl. Math. Computer Sci. 21 (2011), 97-107. Zbl1231.34151MR2814465DOI10.2478/v10006-011-0007-0
  23. Ye, Z. Y., Yang, G., Deng, C. B., 10.1088/1674-1056/20/1/010207, Chinese Physics B 20 (2011), 1-5. DOI10.1088/1674-1056/20/1/010207
  24. Zou, E., Li, X. F., Chen, J. G., Chaos Control and Optimization Applications., National University of Defence Technology Press, Changsha 2002. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.