Synchronization of fractional-order chaotic systems with multiple delays by a new approach
Jianbing Hu; Hua Wei; Lingdong Zhao
Kybernetika (2015)
- Volume: 51, Issue: 6, page 1068-1083
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHu, Jianbing, Wei, Hua, and Zhao, Lingdong. "Synchronization of fractional-order chaotic systems with multiple delays by a new approach." Kybernetika 51.6 (2015): 1068-1083. <http://eudml.org/doc/276319>.
@article{Hu2015,
abstract = {In this paper, we propose a new approach of designing a controller and an update rule of unknown parameters for synchronizing fractional-order system with multiple delays and prove the correctness of the approach according to the fractional Lyapunov stable theorem. Based on the proposed approach, synchronizing fractional delayed chaotic system with and without unknown parameters is realized. Numerical simulations are carried out to confirm the effectiveness of the approach.},
author = {Hu, Jianbing, Wei, Hua, Zhao, Lingdong},
journal = {Kybernetika},
keywords = {fractional-order; multiple delays; Lyapunov stable theorem; synchronization; unknown parameters},
language = {eng},
number = {6},
pages = {1068-1083},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Synchronization of fractional-order chaotic systems with multiple delays by a new approach},
url = {http://eudml.org/doc/276319},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Hu, Jianbing
AU - Wei, Hua
AU - Zhao, Lingdong
TI - Synchronization of fractional-order chaotic systems with multiple delays by a new approach
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 6
SP - 1068
EP - 1083
AB - In this paper, we propose a new approach of designing a controller and an update rule of unknown parameters for synchronizing fractional-order system with multiple delays and prove the correctness of the approach according to the fractional Lyapunov stable theorem. Based on the proposed approach, synchronizing fractional delayed chaotic system with and without unknown parameters is realized. Numerical simulations are carried out to confirm the effectiveness of the approach.
LA - eng
KW - fractional-order; multiple delays; Lyapunov stable theorem; synchronization; unknown parameters
UR - http://eudml.org/doc/276319
ER -
References
top- Chen, L. P., Wei, S. B., Chai, Y., 10.1155/2012/916140, Math. Problems Engrg. 2012 (2012), 1-16. Zbl1264.34103DOI10.1155/2012/916140
- Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., Castro, R., 10.1016/j.cnsns.2014.10.008, Comm. Nonlinear Sci. Numer. Simul. 22 (2015), 650-659. MR3282452DOI10.1016/j.cnsns.2014.10.008
- Farivar, F., Shoorehdeli, M. A., 10.1016/j.isatra.2011.07.002, ISA Trans. 51 (2012), 50-64. DOI10.1016/j.isatra.2011.07.002
- Goldfain, E., 10.1016/j.cnsns.2006.12.007, Comm. Nonlinear Sci. Numer. Simul. 13 (2008), 1397-1404. Zbl1221.81175MR2369469DOI10.1016/j.cnsns.2006.12.007
- Gong, Y. B., Lin, X., Wang, L., 10.1007/s11426-011-4363-2, Science China - Chemistry 54 (2011), 1498-1503. DOI10.1007/s11426-011-4363-2
- Gutierrez, R. E., Rosario, J. M., Machado, J. T., 10.1155/2010/375858, Math. Problems Engrg. 2010 (2010), 1-10. Zbl1190.26002DOI10.1155/2010/375858
- He, J. H., 10.1016/s0045-7825(98)00108-x, Computer Methods Appl. Mech. Engrg. 167 (1998), 57-68. Zbl0942.76077MR1665221DOI10.1016/s0045-7825(98)00108-x
- Li, X. D., Bohner, M., 10.1016/j.mcm.2010.04.011, Math. Computer Modelling 52 (2010), 643-653. Zbl1202.34128MR2661751DOI10.1016/j.mcm.2010.04.011
- Li, C. P., Deng, W. H., Xu, D., 10.1016/j.physa.2005.06.078, Physica A - Statist. Mech. Appl. 360 (2006), 171-185. MR2186261DOI10.1016/j.physa.2005.06.078
- Li, M. D., Li, D. H., Wang, J., 10.1016/j.isatra.2013.01.001, ISA Trans. 52 (2013), 365-374. DOI10.1016/j.isatra.2013.01.001
- Lin, T. C., Kuo, C. H., 10.1016/j.isatra.2011.06.001, ISA Trans. 50 (2011), 548-556. DOI10.1016/j.isatra.2011.06.001
- Lu, J. H., Chen, G. R., 10.1109/tac.2005.849233, IEEE Trans. Automat. Control 50 (2005), 841-846. MR2142000DOI10.1109/tac.2005.849233
- Lu, J. H., Chen, G. R., 10.1142/s0218127406015179, Int. J. Bifurcation Chaos 16 (2006), 775-858. MR2234259DOI10.1142/s0218127406015179
- Merrikh-Bayat, F., Karimi-Ghartemani, M., 10.1016/j.isatra.2008.10.003, ISA Trans. 48 (2008), 32-37. DOI10.1016/j.isatra.2008.10.003
- Miao, Q. Y., Fang, J. A., Tang, Y., 10.1088/0256-307x/26/5/050501, Chinese Phys. Lett. 26 (2009), 5, 050501. DOI10.1088/0256-307x/26/5/050501
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations., A Wiley-Interscience Publication, 1993. Zbl0789.26002MR1219954
- Peng, M. S., 10.1016/j.chaos.2004.02.038, Chaos Solitons and Fractals 22 (2004), 483-493. Zbl1061.37022MR2024872DOI10.1016/j.chaos.2004.02.038
- Podlubny, I., Fractional Differential Equatons: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of Their Solution and Some of Their Applications., Academic Press, San Diego 1999. MR1658022
- Slotine, J. J. E., Li, W., Applied nonlinear Control., Prentice Hall, 1999. Zbl0753.93036
- Sollund, T., Leib, H., 10.1109/tcomm.2012.12.100001, IEEE Transa. Commun. 60 (2012), 688-705. DOI10.1109/tcomm.2012.12.100001
- Tan, S. L., Lu, J. H., Yu, X. H., 10.1007/s11434-013-5984-y, Chinese Sci. Bull. 58 (2013), 28-29. DOI10.1007/s11434-013-5984-y
- Tan, S. L., Lu, J. H., Hill, D. J., 10.1109/tac.2014.2329235, IEEE Trans. Automat. Control 60 (2015), 576-581. MR3310190DOI10.1109/tac.2014.2329235
- Tang, Y., Gao, H., Zou, W., Kurths, J., 10.1109/tsmcb.2012.2207718, IEEE Trans. Cybernet. 43 (2013), 358-370. DOI10.1109/tsmcb.2012.2207718
- Tang, Y., Wong, W. K., 10.1109/tnnls.2012.2236355, IEEE Trans. Neural Networks Learning Systems 24 (2013), 435-447. DOI10.1109/tnnls.2012.2236355
- Wang, X. Y., Wang, M. J., Hyperchaotic Lorenz system., Acta Physica Sinica 56 (2007), 5136-5141. Zbl1267.93157MR2371460
- Wang, X. D., Tian, L. X., 10.1016/j.chaos.2005.04.009, Chaos Solitions Fractals 27 (2006), 31-38. Zbl1091.93031MR2165262DOI10.1016/j.chaos.2005.04.009
- Wang, S., Yu, Y. G., 10.1088/0256-307x/29/2/020505, Chinese Phys. Lett. 29 (2012), 2, 020505. DOI10.1088/0256-307x/29/2/020505
- Zhao, L. D., Hu, J. B., al., J. A. Fang et, 10.1016/j.isatra.2013.07.001, ISA Trans. 52 (2013), 738-743. DOI10.1016/j.isatra.2013.07.001
- Zhang, Y. L., Luo, M. K., 10.1007/s11071-012-0521-0, Nonlinear Dynamics 70 (2012), 1173-1183. Zbl1268.34089MR2992124DOI10.1007/s11071-012-0521-0
- Zhang, B. T., Pi, Y. G., Luo, Y., 10.1016/j.isatra.2012.04.006, ISA Trans. 51 (2012), 649-656. DOI10.1016/j.isatra.2012.04.006
- Zhou, J., Lu, j. A., Lu, J. H., 10.1109/tac.2006.872760, IEEE Trans. Automat. Control 51 (2006), 652-656. MR2228029DOI10.1109/tac.2006.872760
- Zhu, W., Fang, J. A., Tang, Y., 10.1016/j.physleta.2012.09.042, Physics Lett. A 376 (2012), 3113-3120. DOI10.1016/j.physleta.2012.09.042
- Zhu, H., He, Z. S., Zhou, S. B., 10.1142/s0217979211102253, Int. J. Modern Physics B 25 (2011), 3951-3964. Zbl1247.34099DOI10.1142/s0217979211102253
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.