Synchronization of fractional chaotic complex networks with delays
Jian-Bing Hu; Hua Wei; Ye-Feng Feng; Xiao-Bo Yang
Kybernetika (2019)
- Volume: 55, Issue: 1, page 203-215
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHu, Jian-Bing, et al. "Synchronization of fractional chaotic complex networks with delays." Kybernetika 55.1 (2019): 203-215. <http://eudml.org/doc/294163>.
@article{Hu2019,
abstract = {The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function $V$ and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method.},
author = {Hu, Jian-Bing, Wei, Hua, Feng, Ye-Feng, Yang, Xiao-Bo},
journal = {Kybernetika},
keywords = {fractional complex networks; delays; Lyapunov-Krasovskii theorem; synchronization},
language = {eng},
number = {1},
pages = {203-215},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Synchronization of fractional chaotic complex networks with delays},
url = {http://eudml.org/doc/294163},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Hu, Jian-Bing
AU - Wei, Hua
AU - Feng, Ye-Feng
AU - Yang, Xiao-Bo
TI - Synchronization of fractional chaotic complex networks with delays
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 1
SP - 203
EP - 215
AB - The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function $V$ and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method.
LA - eng
KW - fractional complex networks; delays; Lyapunov-Krasovskii theorem; synchronization
UR - http://eudml.org/doc/294163
ER -
References
top- Ahmad, B., Ntouyas, S. K., Tariboon, J., Alsaedi, A., Alsulami, H. H., 10.1016/j.amc.2016.01.051, Appl. Math. Comput. 281 (2016), 199-213. MR3466095DOI10.1016/j.amc.2016.01.051
- An, F., Gao, X. Y., Guan, J. H., Li, H. J., Liu, Q., 10.1016/j.physa.2015.12.050, Physica A: Statist. Mechanics and Its Appl. 447 (2016), 276-285. DOI10.1016/j.physa.2015.12.050
- Aguila-Camacho, N., Duarte-Mermoud, M. A., Gallegos, J. A., 10.1016/j.cnsns.2014.01.022, Commu. Nonlinear Science Numer. Simul. 19 (2014), 2951-2957. MR3182869DOI10.1016/j.cnsns.2014.01.022
- Baleanu, D., Ranjbar, A., Sadati, S. J., Delavari, R. H., Abdeljawad, T., Gejji, V., Lyapunov-Krasovskii stability theorem for fractional systems with delay., Romanian J. Phys. 56 (2011), 636-643. MR2821032
- Chen, Y., Lü, J., 10.1016/j.automatica.2017.07.059, Automatica 85 (2017), 356-361. MR3712878DOI10.1016/j.automatica.2017.07.059
- Chen, L. P., Pan, W., Wu, R. C., Machado, J. A. T., Lopes, A. M., 10.1063/1.4958717, Chaos 26 (2016), 8, 084303. MR3522604DOI10.1063/1.4958717
- Dai, H., Si, G. Q., Jia, L. X., Zhang, Y. B., 10.1088/0031-8949/88/05/055006, Physica Scripta 88 (2013), 5, 055006. DOI10.1088/0031-8949/88/05/055006
- David, S. A., Machado, J. A. T., Quintino, D. D., Balthazar, J. M., 10.1016/j.matcom.2015.11.004, Math. Computers Simul. 122 (2016), 55-68. MR3436941DOI10.1016/j.matcom.2015.11.004
- Hu, J. B., Lu, G. P., Zhao, L. D., 10.1007/s11071-015-2390-9, Nonlinear dynamics 83 (2016), 1101-1108. MR3435929DOI10.1007/s11071-015-2390-9
- Hu, J. B., Wei, H., Zhao, L. D., 10.14736/kyb-2015-6-1068, Kybernetika 51 (2015), 1068-1083. MR3453686DOI10.14736/kyb-2015-6-1068
- Li, B. C., 10.1016/j.apm.2015.09.092, Appl. Math. Modell. 40 (2016), 2983-2998. MR3454505DOI10.1016/j.apm.2015.09.092
- Li, Y., Wu, X., Lu, J. A., Lü, J., 10.1109/tcsii.2015.2468924, IEEE Trans. Circuits Systems II Express Briefs 63 (2016), 206-210. DOI10.1109/tcsii.2015.2468924
- Liang, S., Wu, R. C., Chen, L. P., 10.1016/j.physa.2015.10.011, Physica a-Statistical Mechanics and Its Applications 444(2016), 49-62. MR3428092DOI10.1016/j.physa.2015.10.011
- Liu, K., Wu, L., Lü, J., Zhu, H., 10.1007/s11431-015-5989-7, Science China Technol. Sci. 59 (2016), 22-32. DOI10.1007/s11431-015-5989-7
- Liu, K., Zhu, H., Lü, J., 10.1109/tcsi.2017.2675922, IEEE Trans. Circuits Systems I Regular Papers 64(2017), 1891-1902. MR3671833DOI10.1109/tcsi.2017.2675922
- Rivero, M., Rogosin, S. V., Machado, J. A. T., Trujillo, J. J., Stability of fractional order systems., Math. Problems Engrg. 2013 (2013), 1-14. MR3062648
- Spasic, D. T., Kovincic, N. I., Dankuc, D. V., 10.1016/j.cnsns.2016.01.004, Comm. Nonlinear Sci. Numer. Simul. 37 (2016), 193-199. MR3466784DOI10.1016/j.cnsns.2016.01.004
- Tang, H. W., Chen, L., Lu, J. A., Tse, C. K., 10.1016/j.physa.2008.05.047, Physica a-Statistical Mechanics and Its Applications 387 (2008) 5623-5630. DOI10.1016/j.physa.2008.05.047
- Tang, Y., Gao, H. J., Kurths, J., 10.1109/tcsi.2013.2285699, IEEE Trans. Circuits Systems I-Regular Papers, 61 (2014), 1508-1519. MR3200565DOI10.1109/tcsi.2013.2285699
- Uncini, A., Piazza, F., 10.1109/tnn.2003.809411, IEEE Trans. Neural Networks 14 (2003), 399-412. DOI10.1109/tnn.2003.809411
- Wang, Y., Li, T. Z., 10.1016/j.physa.2015.02.051, Physica a-Statistical Mechanics and Its Applications 428 (2015), 1-12. MR3322873DOI10.1016/j.physa.2015.02.051
- Wang, J. W., Ma, Q. H., Chen, A. M., Liang, Z. P., 10.1016/j.isatra.2015.02.002, ISA Trans. 57 (2015), 111-116. DOI10.1016/j.isatra.2015.02.002
- Wang, F., Yang, Y. Q., Hu, A. H., Xu, X. Y., 10.1007/s11071-015-2292-x, Nonlinear Dynamics 82 (2015), 1979-1987. MR3422995DOI10.1007/s11071-015-2292-x
- Wang, Z., Huang, X., Li, Y. X., Song, X. N., 10.1088/1674-1056/22/1/010504, Chinese Physics B 22 (2013), 1, 010504. DOI10.1088/1674-1056/22/1/010504
- Wang, F., Yang, Y. Q., Hu, M. F., Xu, X. Y., 10.1016/j.physa.2015.03.089, Physica a-Statistical Mechanics and Its Applications 434 (2015), 134-143. MR3349715DOI10.1016/j.physa.2015.03.089
- Wu, G. C., Baleanu, D., 10.1007/s11071-014-1250-3, Nonlinear Dynamics 80 (2015), 1697-1703. MR3343425DOI10.1007/s11071-014-1250-3
- Wu, G. C., Baleanu, D., Deng, Z. G., Zeng, S. D., 10.1016/j.physa.2015.06.024, Physica a-Statistical Mechanics and Its Applications 438 (2015), 335-339. MR3384291DOI10.1016/j.physa.2015.06.024
- Yi, J. W., Wang, Y. W., Xiao, J. W., Huang, Y. H., 10.1080/00207721.2014.919426, Int. J. Systems Sci. 47 (2016), 1221-1229. MR3441585DOI10.1080/00207721.2014.919426
- Zhang, W. B., Tang, Y., Miao, Q. Y., Fang, J. A., 10.1109/tnnls.2013.2294727, IEEE Trans. Neural Networks Learning Systems 25 (2014), 1758-1768. DOI10.1109/tnnls.2013.2294727
- Zhao, L. D., Hu, J. B., Fang, J. A., Cui, W. X., Xu, Y. L., Wang, X., 10.1016/j.isatra.2013.07.001, ISA Trans. 52 (2013),738-743. DOI10.1016/j.isatra.2013.07.001
- Zhou, W. N., Dai, A. D., Yang, J., Liu, H. S., Liu, X. L., 10.1007/s11071-014-1418-x, Nonlinear Dynamics 78(2014), 15-27. MR3266422DOI10.1007/s11071-014-1418-x
- Zhou, Y., Ionescu, C., Machado, J. A. T., 10.1007/s11071-015-2069-2, Nonlinear Dynamics 80 (2015), 1661-1664. MR3343421DOI10.1007/s11071-015-2069-2
- Zhou, J., Chen, J., Lu, J. A., Lü, J., 10.1109/tac.2016.2615679, IEEE Trans. Automat. Control 62 (2017), 3468-3473. MR3669467DOI10.1109/tac.2016.2615679
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.