Displaying similar documents to “Pseudosymmetric and Weyl-pseudosymmetric ( κ , μ ) -contact metric manifolds”

How to define "convex functions" on differentiable manifolds

Stefan Rolewicz (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In the paper a class of families (M) of functions defined on differentiable manifolds M with the following properties: 1 . if M is a linear manifold, then (M) contains convex functions, 2 . (·) is invariant under diffeomorphisms, 3 . each f ∈ (M) is differentiable on a dense G δ -set, is investigated.

Exotic Deformations of Calabi-Yau Manifolds

Paolo de Bartolomeis, Adriano Tomassini (2013)

Annales de l’institut Fourier

Similarity:

We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) 2 n -dimensional symplectic manifolds ( M , κ ) endowed with a κ -tamed almost complex structure J and with a nowhere vanishing and normalized section ϵ of the bundle Λ J n , 0 ( M ) satisfying the condition ¯ J ϵ = 0 . We study the moduli space 𝔐 of QIS deformations of a given Calabi-Yau manifold, computing its tangent space...

The natural operators T | f T * T r * and T | f Λ ² T * T r *

W. M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let r and n be natural numbers. For n ≥ 2 all natural operators T | f T * T r * transforming vector fields on n-manifolds M to 1-forms on T r * M = J r ( M , ) are classified. For n ≥ 3 all natural operators T | f Λ ² T * T r * transforming vector fields on n-manifolds M to 2-forms on T r * M are completely described.

On the principle of real moduli flexibility: perfect parametrizations

Edoardo Ballico, Riccardo Ghiloni (2014)

Annales Polonici Mathematici

Similarity:

Let V be a real algebraic manifold of positive dimension. The aim of this paper is to show that, for every integer b (arbitrarily large), there exists a trivial Nash family = V y y R b of real algebraic manifolds such that V₀ = V, is an algebraic family of real algebraic manifolds over y R b 0 (possibly singular over y = 0) and is perfectly parametrized by R b in the sense that V y is birationally nonisomorphic to V z for every y , z R b with y ≠ z. A similar result continues to hold if V is a singular real algebraic...

Estimates of the Kobayashi-Royden metric in almost complex manifolds

Hervé Gaussier, Alexandre Sukhov (2005)

Bulletin de la Société Mathématique de France

Similarity:

We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold ( M , J ) admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in M and to give a sufficient condition for the complete hyperbolicity of a domain in ( M , J ) .

η -Ricci Solitons on η -Einstein ( L C S ) n -Manifolds

Shyamal Kumar Hui, Debabrata Chakraborty (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study η -Ricci solitons on η -Einstein ( L C S ) n -manifolds. It is shown that if ξ is a recurrent torse forming η -Ricci soliton on an η -Einstein ( L C S ) n -manifold then ξ is (i) concurrent and (ii) Killing vector field.

Canonical contact forms on spherical CR manifolds

Wei Wang (2003)

Journal of the European Mathematical Society

Similarity:

We construct the CR invariant canonical contact form can ( J ) on scalar positive spherical CR manifold ( M , J ) , which is the CR analogue of canonical metric on locally conformally flat manifold constructed by Habermann and Jost. We also construct another canonical contact form on the Kleinian manifold Ω ( Γ ) / Γ , where Γ is a convex cocompact subgroup of Aut C R S 2 n + 1 = P U ( n + 1 , 1 ) and Ω ( Γ ) is the discontinuity domain of Γ . This contact form can be used to prove that Ω ( Γ ) / Γ is scalar positive (respectively, scalar negative, or scalar vanishing)...

Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds

Laurent Meersseman (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of 0 in p , for some p > 0 ) or differentiable (parametrized by an open neighborhood of 0 in p , for some p > 0 ) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point t of the parameter space, the fiber over t of the first family is biholomorphic to the fiber over t of the second family. Then, under which conditions...

Holonomy groups of flat manifolds with the R property

Rafał Lutowski, Andrzej Szczepański (2013)

Fundamenta Mathematicae

Similarity:

Let M be a flat manifold. We say that M has the R property if the Reidemeister number R(f) is infinite for every homeomorphism f: M → M. We investigate relations between the holonomy representation ρ of M and the R property. When the holonomy group of M is solvable we show that if ρ has a unique ℝ-irreducible subrepresentation of odd degree then M has the R property. This result is related to Conjecture 4.8 in [K. Dekimpe et al., Topol. Methods Nonlinear Anal. 34 (2009)].

Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures

Amalendu Ghosh (2016)

Mathematica Bohemica

Similarity:

We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures ( g , ± ω ) with constant scalar curvature is either Einstein, or the dual field of ω is Killing. Next, let ( M n , g ) be a complete and connected Riemannian manifold of dimension at least 3 admitting a pair of Einstein-Weyl structures ( g , ± ω ) . Then the Einstein-Weyl vector field E (dual to the 1 -form ω ) generates an infinitesimal harmonic transformation if and only if E is Killing.

Some type of semisymmetry on two classes of almost Kenmotsu manifolds

Dibakar Dey, Pradip Majhi (2021)

Communications in Mathematics

Similarity:

The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a ( k , μ ) -almost Kenmotsu manifold satisfying the curvature condition Q · R = 0 is locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) . Also in ( k , μ ) -almost Kenmotsu manifolds the following conditions: (1) local symmetry ( R = 0 ) , (2) semisymmetry ( R · R = 0 ) , (3) Q ( S , R ) = 0 , (4) R · R = Q ( S , R ) , (5) locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) are equivalent. Further, it is proved that a ( k , μ ) ' -almost Kenmotsu manifold...

On prolongations of projectable connections

Jan Kurek, Włodzimierz M. Mikulski (2011)

Annales Polonici Mathematici

Similarity:

We extend the concept of r-order connections on fibred manifolds to the one of (r,s,q)-order projectable connections on fibred-fibred manifolds, where r,s,q are arbitrary non-negative integers with s ≥ r ≤ q. Similarly to the fibred manifold case, given a bundle functor F of order r on (m₁,m₂,n₁,n₂)-dimensional fibred-fibred manifolds Y → M, we construct a general connection ℱ(Γ,Λ):FY → J¹FY on FY → M from a projectable general (i.e. (1,1,1)-order) connection Γ : Y J 1 , 1 , 1 Y on Y → M by means of an...

Complex structures on product of circle bundles over complex manifolds

Parameswaran Sankaran, Ajay Singh Thakur (2013)

Annales de l’institut Fourier

Similarity:

Let L ¯ i X i be a holomorphic line bundle over a compact complex manifold for i = 1 , 2 . Let S i denote the associated principal circle-bundle with respect to some hermitian inner product on L ¯ i . We construct complex structures on S = S 1 × S 2 which we refer to as scalar, diagonal, and linear types. While scalar type structures always exist, the more general diagonal but non-scalar type structures are constructed assuming that L ¯ i are equivariant ( * ) n i -bundles satisfying some additional conditions....

f -biminimal maps between Riemannian manifolds

Yan Zhao, Ximin Liu (2019)

Czechoslovak Mathematical Journal

Similarity:

We give the definition of f -biminimal submanifolds and derive the equation for f -biminimal submanifolds. As an application, we give some examples of f -biminimal manifolds. Finally, we consider f -minimal hypersurfaces in the product space n × 𝕊 1 ( a ) and derive two rigidity theorems.