Incomparability with respect to the triangular order

Emel Aşıcı; Funda Karaçal

Kybernetika (2016)

  • Volume: 52, Issue: 1, page 15-27
  • ISSN: 0023-5954

Abstract

top
In this paper, we define the set of incomparable elements with respect to the triangular order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply investigated. Finally, we discuss some properties of this equivalence.

How to cite

top

Aşıcı, Emel, and Karaçal, Funda. "Incomparability with respect to the triangular order." Kybernetika 52.1 (2016): 15-27. <http://eudml.org/doc/276783>.

@article{Aşıcı2016,
abstract = {In this paper, we define the set of incomparable elements with respect to the triangular order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply investigated. Finally, we discuss some properties of this equivalence.},
author = {Aşıcı, Emel, Karaçal, Funda},
journal = {Kybernetika},
keywords = {triangular norm; $T$-partial order; bounded lattice},
language = {eng},
number = {1},
pages = {15-27},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Incomparability with respect to the triangular order},
url = {http://eudml.org/doc/276783},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Aşıcı, Emel
AU - Karaçal, Funda
TI - Incomparability with respect to the triangular order
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 1
SP - 15
EP - 27
AB - In this paper, we define the set of incomparable elements with respect to the triangular order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply investigated. Finally, we discuss some properties of this equivalence.
LA - eng
KW - triangular norm; $T$-partial order; bounded lattice
UR - http://eudml.org/doc/276783
ER -

References

top
  1. Aşıcı, E., Karaçal, F., 10.1016/j.ins.2014.01.032, Inf. Sci. 267 (2014), 323-333. MR3177320DOI10.1016/j.ins.2014.01.032
  2. Birkhoff, G., Lattice Theory. Third edition., Providence 1967. MR0227053
  3. Baets, B. De, Mesiar, R., 10.1016/s0165-0114(98)00259-0, Fuzzy Sets Syst. 104 (1999), 61-75. Zbl0935.03060MR1685810DOI10.1016/s0165-0114(98)00259-0
  4. Baets, B. De, Mesiar, R., Triangular norms on the real unit square., In: Proc. 1999 EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca 1999, pp. 351-354. 
  5. Casasnovas, J., Mayor, G., 10.1016/j.fss.2007.12.005, Fuzzy Sets Syst. 159 (2008), 1165-1177. Zbl1176.03023MR2416385DOI10.1016/j.fss.2007.12.005
  6. Gottwald, S., A Treatise on Many-valued Logic., Studies in Logic and Computation, Research Studies Press, Baldock 2001. MR1856623
  7. Karaçal, F., Aşıcı, E., 10.1186/1029-242x-2013-219, J. Inequal. Appl. 2013 (2013), 219. MR3065324DOI10.1186/1029-242x-2013-219
  8. Karaçal, F., Kesicioğlu, M. N., A T-partial order obtained from t-norms., Kybernetika 47 (2011), 300-314. Zbl1245.03086MR2828579
  9. Karaçal, F., Sağıroğlu, Y., Infinetely - distributive t-norm on complete lattices and pseudo-complements., Fuzzy Sets Syst. 160 (2009), 32-43. MR2469428
  10. Karaçal, F., Khadjiev, Dj., 10.1016/j.fss.2008.03.022, Fuzzy Sets Syst. 151 (2005), 341-352. MR2124884DOI10.1016/j.fss.2008.03.022
  11. Karaçal, F., 10.1016/j.ins.2005.12.010, Inf. Sci. 176 (2006), 3011-3025. Zbl1104.03016MR2247614DOI10.1016/j.ins.2005.12.010
  12. Kesicioğlu, M. N., Karaçal, F., Mesiar, R., Order-equivalent triangular norms., Fuzzy Sets Syst. 268 (2015), 59-71. MR3320247
  13. Khadjiev, D., Karaçal, F., 10.1016/j.ins.2012.03.014, Inf. Sci. 204 (2012), 36-43. Zbl1270.03139MR2925708DOI10.1016/j.ins.2012.03.014
  14. Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
  15. Liang, X., Pedrycz, W., 10.1016/j.fss.2009.04.014, Fuzzy Sets Syst. 160 (2009), 3475-3502. Zbl1185.68546MR2563300DOI10.1016/j.fss.2009.04.014
  16. Maes, K. C., Mesiarova-Zemankova, A., 10.1016/j.ins.2008.11.035, Inf. Sci. 179 (2009), 135-150. Zbl1162.03013MR2501780DOI10.1016/j.ins.2008.11.035
  17. Martin, J., Mayor, G., Torrens, J., 10.1016/s0165-0114(02)00430-x, Fuzzy Sets Syst. 137 (2003), 27-42. Zbl1022.03038MR1992696DOI10.1016/s0165-0114(02)00430-x
  18. Mitsch, H., 10.1090/s0002-9939-1986-0840614-0, Proc. Am. Math. Soc. 97 (1986), 384-388. Zbl0596.06015MR0840614DOI10.1090/s0002-9939-1986-0840614-0
  19. Saminger, S., 10.1016/j.fss.2005.12.021, Fuzzy Sets Syst. 157 (2006), 1403-1413. Zbl1099.06004MR2226983DOI10.1016/j.fss.2005.12.021
  20. Schweizer, B., Sklar, A., Probabilistic Metric Spaces., Elsevier, Amsterdam 1983. Zbl0546.60010MR0790314
  21. Schweizer, B., Sklar, A., Espaces métriques aléatoires., C. R. Acad. Sci. Paris Sér. A 247 (1958), 2092-2094. Zbl0085.12503MR0099068
  22. Schweizer, B., Sklar, A., 10.2140/pjm.1960.10.313, Pacific J. Math. 10 (1960), 313-334. Zbl0136.39301MR0115153DOI10.2140/pjm.1960.10.313
  23. Schweizer, B., Sklar, A., Associative functions and abstract semigroups., Publ. Math. Debrecen 10 (1963), 69-81. MR0170967

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.