Notes on locally internal uninorm on bounded lattices

Gül Deniz Çaylı; Ümit Ertuğrul; Tuncay Köroğlu; Funda Karaçal

Kybernetika (2017)

  • Volume: 53, Issue: 5, page 911-921
  • ISSN: 0023-5954

Abstract

top
In the study, we introduce the definition of a locally internal uninorm on an arbitrary bounded lattice L . We examine some properties of an idempotent and locally internal uninorm on an arbitrary bounded latice L , and investigate relationship between these operators. Moreover, some illustrative examples are added to show the connection between idempotent and locally internal uninorm.

How to cite

top

Çaylı, Gül Deniz, et al. "Notes on locally internal uninorm on bounded lattices." Kybernetika 53.5 (2017): 911-921. <http://eudml.org/doc/294308>.

@article{Çaylı2017,
abstract = {In the study, we introduce the definition of a locally internal uninorm on an arbitrary bounded lattice $L$. We examine some properties of an idempotent and locally internal uninorm on an arbitrary bounded latice $L$, and investigate relationship between these operators. Moreover, some illustrative examples are added to show the connection between idempotent and locally internal uninorm.},
author = {Çaylı, Gül Deniz, Ertuğrul, Ümit, Köroğlu, Tuncay, Karaçal, Funda},
journal = {Kybernetika},
keywords = {bounded lattice; uninorm; idempotent uninorm; locally internal},
language = {eng},
number = {5},
pages = {911-921},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Notes on locally internal uninorm on bounded lattices},
url = {http://eudml.org/doc/294308},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Çaylı, Gül Deniz
AU - Ertuğrul, Ümit
AU - Köroğlu, Tuncay
AU - Karaçal, Funda
TI - Notes on locally internal uninorm on bounded lattices
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 911
EP - 921
AB - In the study, we introduce the definition of a locally internal uninorm on an arbitrary bounded lattice $L$. We examine some properties of an idempotent and locally internal uninorm on an arbitrary bounded latice $L$, and investigate relationship between these operators. Moreover, some illustrative examples are added to show the connection between idempotent and locally internal uninorm.
LA - eng
KW - bounded lattice; uninorm; idempotent uninorm; locally internal
UR - http://eudml.org/doc/294308
ER -

References

top
  1. Aşıcı, E., Karaçal, F., 10.14736/kyb-2016-1-0015, Kybernetika 52 (2016), 15-27. MR3482608DOI10.14736/kyb-2016-1-0015
  2. Birkhoff, G., 10.1090/coll/025, American Mathematical Society Colloquium Publ., Providence 1967. Zbl0537.06001MR0227053DOI10.1090/coll/025
  3. Baets, B. De, 10.1016/s0377-2217(98)00325-7, European J. Oper. Res. 118 (1999), 631-642. Zbl1178.03070DOI10.1016/s0377-2217(98)00325-7
  4. Baets, B. De, Fodor, J., 10.1016/j.fss.2011.12.001, Fuzzy Sets Syst. 202 (2012), 89-99. MR2934788DOI10.1016/j.fss.2011.12.001
  5. Çaylı, G. D., Karaçal, F., Mesiar, R., 10.1016/j.ins.2016.05.036, Inform. Sci. 367-368 (2016), 221-231. MR3684677DOI10.1016/j.ins.2016.05.036
  6. Çaylı, G. D., Drygaś, P., 10.1016/j.ins.2017.09.018, Inform. Sci. 422 (2018), 352-363. MR3709474DOI10.1016/j.ins.2017.09.018
  7. Drewniak, J., Drygaś, P., 10.1142/s021848850200179x, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10 (2002), 5-10. MR1962665DOI10.1142/s021848850200179x
  8. Drygaś, P., 10.1016/j.fss.2009.09.017, Fuzzy Sets Syst. 161 (2010), 149-157. Zbl1191.03039MR2566236DOI10.1016/j.fss.2009.09.017
  9. Drygaś, P., Ruiz-Aguilera, D., Torrens, J., 10.1016/j.fss.2009.09.017, Fuzzy Sets Syst. 287 (2016), 137-153. MR3447023DOI10.1016/j.fss.2009.09.017
  10. Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F., 10.1016/j.ins.2015.10.019, Inform. Sci. 330 (2016), 315-327. DOI10.1016/j.ins.2015.10.019
  11. Fodor, J., Yager, R. R., Rybalov, A., 10.1142/s0218488597000312, Int. J. Uncertain Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. Zbl1232.03015MR1471619DOI10.1142/s0218488597000312
  12. Kesicioğlu, M. N., Mesiar, R., 10.1016/j.ins.2013.12.047, Fuzzy Sets Syst. 276 (2014), 377-386. MR3206505DOI10.1016/j.ins.2013.12.047
  13. Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F., 10.1016/j.ins.2017.05.020, Inform. Sci. 411 (2017), 39-51. MR3659313DOI10.1016/j.ins.2017.05.020
  14. Karaçal, F., Mesiar, R., 10.1016/j.fss.2014.05.001, Fuzzy Sets Syst. 261 (2015), 33-43. MR3291484DOI10.1016/j.fss.2014.05.001
  15. Karaçal, F., Ertuğrul, Ü., Mesiar, R., 10.1016/j.fss.2016.05.014, Fuzzy Sets Syst. 308 (2017), 54-71. MR3579154DOI10.1016/j.fss.2016.05.014
  16. Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Dordrecht, Kluwer Acad. Publ., 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
  17. Martin, J., Mayor, G., Torrens, J., 10.1016/s0165-0114(02)00430-x, Fuzzy Sets Syst. 137 (2003), 27-42. Zbl1022.03038MR1992696DOI10.1016/s0165-0114(02)00430-x
  18. Mesiarová-Zemánková, A., 10.1016/j.ins.2014.12.060, Inform. Sci. 301 (2015), 227-240. MR3311790DOI10.1016/j.ins.2014.12.060
  19. Yager, R. R., 10.1016/s0165-0114(00)00027-0, Fuzzy Sets Syst. 122 (2001), 167-175. MR1839955DOI10.1016/s0165-0114(00)00027-0
  20. Yager, R. R., 10.1016/s0377-2217(01)00267-3, European J. Oper. Res. 141 (2002), 217-232. Zbl0998.90046MR1925395DOI10.1016/s0377-2217(01)00267-3
  21. Yager, R. R., Rybalov, A., 10.1016/0165-0114(95)00133-6, Fuzzy Sets Syst. 80 (1996), 111-120. MR1389951DOI10.1016/0165-0114(95)00133-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.