On the weak robustness of fuzzy matrices
Kybernetika (2013)
- Volume: 49, Issue: 1, page 128-140
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPlavka, Ján. "On the weak robustness of fuzzy matrices." Kybernetika 49.1 (2013): 128-140. <http://eudml.org/doc/252482>.
@article{Plavka2013,
abstract = {A matrix $A$ in $(\max ,\min )$-algebra (fuzzy matrix) is called weakly robust if $A^k\otimes x $ is an eigenvector of $A$ only if $x$ is an eigenvector of $A$. The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an $O(n^2)$ algorithm for checking the weak robustness is described.},
author = {Plavka, Ján},
journal = {Kybernetika},
keywords = {weak robustness; fuzzy matrices; weak robustness; fuzzy matrices; fuzzy discrete dynamic systems; eigenvector; polynomial algorithm; fuzzy algebra; eigenspace; orbit; permutation marices; Hamiltonian permutation matrices},
language = {eng},
number = {1},
pages = {128-140},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the weak robustness of fuzzy matrices},
url = {http://eudml.org/doc/252482},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Plavka, Ján
TI - On the weak robustness of fuzzy matrices
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 1
SP - 128
EP - 140
AB - A matrix $A$ in $(\max ,\min )$-algebra (fuzzy matrix) is called weakly robust if $A^k\otimes x $ is an eigenvector of $A$ only if $x$ is an eigenvector of $A$. The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an $O(n^2)$ algorithm for checking the weak robustness is described.
LA - eng
KW - weak robustness; fuzzy matrices; weak robustness; fuzzy matrices; fuzzy discrete dynamic systems; eigenvector; polynomial algorithm; fuzzy algebra; eigenspace; orbit; permutation marices; Hamiltonian permutation matrices
UR - http://eudml.org/doc/252482
ER -
References
top- Cechlárová, K., Eigenvectors in bottleneck algebra., Linear Algebra Appl. 174 (1992), 63-73. Zbl0756.15014MR1179341
- Cechlárová, K., Unique solvability of fuzzy equations and strong regularity of matrices over fuzzy algebra., Fuzzy Sets and Systems 75 (1995), 165-177. Zbl0852.15011MR1358219
- Nola, A. Di, Sessa, S., Pedrycz, W., Sanchez, E., Fuzzy Relation Equations and Their Application to Knowledge Engineering., Kluwer, Dordrecht 1989. MR1120025
- Gavalec, M., 10.1016/S0166-218X(96)00079-0, Discrete Appl. Math. 75 (1997), 63-70. Zbl0876.05070MR1451951DOI10.1016/S0166-218X(96)00079-0
- Gavalec, M., 10.1016/S0165-0114(01)00108-7, Fuzzy Sets and Systems 124 (2001), 385-393. Zbl0994.03047MR1860858DOI10.1016/S0165-0114(01)00108-7
- Gondran, M., Minoux, M., Valeurs propres et vecteurs propres en théorie des graphes., Colloques Internationaux, C.N.R.S., Paris 1978, pp. 181-183.
- Gondran, M., Minoux, M., Graphs, Dioids and Semirings: New Models and Algorithms., Springer 2008. Zbl1201.16038MR2389137
- Horvath, T., Vojtáš, P., Induction of fuzzy and annotated logic programs., Inductive Logic Programming 4455 (2007), 260-274. Zbl1201.68089
- Molnárová, M., Myšková, H., Plavka, J., The robustness of interval fuzzy matrices., Linear Algebra and Its Applications
- Myšková, H., Interval systems of max-separable linear equations., Linear Algebra Appl. 403 (2005), 263-272. Zbl1129.15003MR2140286
- Myšková, H., Control solvability of interval systems of max-separable linear equations., Linear Algebra Appl. 416 (2006), 215-223. Zbl1129.15003MR2242726
- Myšková, M., Max-min interval systems of linear equations with bounded solution., Kybernetika 48 (2012), 2, 299-308. MR2954328
- Plavka, J., Szabó, P., 10.1016/j.dam.2010.11.020, Discrete Appl. Math. 159(2011), 5, 381-388. Zbl1225.15027MR2755915DOI10.1016/j.dam.2010.11.020
- Plavka, J., 10.1016/j.dam.2011.11.010, Discrete Appl. Math. 160 (2012), 640-647. MR2876347DOI10.1016/j.dam.2011.11.010
- Plavka, J., Vojtáš, P., On the computing the maximal multiple users preferences using strong robustness of interval fuzzy matrices., Submitted.
- Sanchez, E., 10.1016/0165-0114(78)90033-7, Fuzzy Sets and Systems 1 (1978), 69-74. Zbl0366.04001MR0494745DOI10.1016/0165-0114(78)90033-7
- Sanchez, E., Medical diagnosis and composite relations., In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, R. R. Yager, eds.), North-Holland, Amsterdam - New York 1979, pp. 437-444. MR0558737
- Tan, Yi-Jia, 10.1016/S0024-3795(98)10105-2, Lin. Algebra Appl. 283 (1998), 257-272. Zbl0932.15005MR1657171DOI10.1016/S0024-3795(98)10105-2
- Tan, Yi-Jia, On the eigenproblem of matrices over distributive lattices., Lin. Algebra Appl. 374 (2003), 96-106. MR2008782
- Terano, T., Tsukamoto, Y., Failure diagnosis by using fuzzy logic., In: Proc. IEEE Conference on Decision Control, New Orleans 1977, pp. 1390-1395.
- Zimmernann, K., Extremální algebra (in Czech)., Ekonom. ústav ČSAV, Praha 1976.
- Zimmermann, U., Linear and Combinatorial Optimization in Ordered Algebraic Structure., North Holland, Amsterdam 1981. MR0609751
Citations in EuDML Documents
top- Ján Plavka, Sergeĭ Sergeev, Characterizing matrices with -simple image eigenspace in max-min semiring
- Ján Plavka, Štefan Berežný, -simplicity of interval max-min matrices
- Matej Gazda, Ján Plavka, Controllable and tolerable generalized eigenvectors of interval max-plus matrices
- Ján Plavka, Computing the greatest -eigenvector of a matrix in max-min algebra
- Martin Gavalec, Helena Myšková, Ján Plavka, Daniela Ponce, Tolerance problems for generalized eigenvectors of interval fuzzy matrices
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.