On the weak robustness of fuzzy matrices

Ján Plavka

Kybernetika (2013)

  • Volume: 49, Issue: 1, page 128-140
  • ISSN: 0023-5954

Abstract

top
A matrix A in ( max , min ) -algebra (fuzzy matrix) is called weakly robust if A k x is an eigenvector of A only if x is an eigenvector of A . The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an O ( n 2 ) algorithm for checking the weak robustness is described.

How to cite

top

Plavka, Ján. "On the weak robustness of fuzzy matrices." Kybernetika 49.1 (2013): 128-140. <http://eudml.org/doc/252482>.

@article{Plavka2013,
abstract = {A matrix $A$ in $(\max ,\min )$-algebra (fuzzy matrix) is called weakly robust if $A^k\otimes x $ is an eigenvector of $A$ only if $x$ is an eigenvector of $A$. The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an $O(n^2)$ algorithm for checking the weak robustness is described.},
author = {Plavka, Ján},
journal = {Kybernetika},
keywords = {weak robustness; fuzzy matrices; weak robustness; fuzzy matrices; fuzzy discrete dynamic systems; eigenvector; polynomial algorithm; fuzzy algebra; eigenspace; orbit; permutation marices; Hamiltonian permutation matrices},
language = {eng},
number = {1},
pages = {128-140},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the weak robustness of fuzzy matrices},
url = {http://eudml.org/doc/252482},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Plavka, Ján
TI - On the weak robustness of fuzzy matrices
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 1
SP - 128
EP - 140
AB - A matrix $A$ in $(\max ,\min )$-algebra (fuzzy matrix) is called weakly robust if $A^k\otimes x $ is an eigenvector of $A$ only if $x$ is an eigenvector of $A$. The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an $O(n^2)$ algorithm for checking the weak robustness is described.
LA - eng
KW - weak robustness; fuzzy matrices; weak robustness; fuzzy matrices; fuzzy discrete dynamic systems; eigenvector; polynomial algorithm; fuzzy algebra; eigenspace; orbit; permutation marices; Hamiltonian permutation matrices
UR - http://eudml.org/doc/252482
ER -

References

top
  1. Cechlárová, K., Eigenvectors in bottleneck algebra., Linear Algebra Appl. 174 (1992), 63-73. Zbl0756.15014MR1179341
  2. Cechlárová, K., Unique solvability of max - min fuzzy equations and strong regularity of matrices over fuzzy algebra., Fuzzy Sets and Systems 75 (1995), 165-177. Zbl0852.15011MR1358219
  3. Nola, A. Di, Sessa, S., Pedrycz, W., Sanchez, E., Fuzzy Relation Equations and Their Application to Knowledge Engineering., Kluwer, Dordrecht 1989. MR1120025
  4. Gavalec, M., 10.1016/S0166-218X(96)00079-0, Discrete Appl. Math. 75 (1997), 63-70. Zbl0876.05070MR1451951DOI10.1016/S0166-218X(96)00079-0
  5. Gavalec, M., 10.1016/S0165-0114(01)00108-7, Fuzzy Sets and Systems 124 (2001), 385-393. Zbl0994.03047MR1860858DOI10.1016/S0165-0114(01)00108-7
  6. Gondran, M., Minoux, M., Valeurs propres et vecteurs propres en théorie des graphes., Colloques Internationaux, C.N.R.S., Paris 1978, pp. 181-183. 
  7. Gondran, M., Minoux, M., Graphs, Dioids and Semirings: New Models and Algorithms., Springer 2008. Zbl1201.16038MR2389137
  8. Horvath, T., Vojtáš, P., Induction of fuzzy and annotated logic programs., Inductive Logic Programming 4455 (2007), 260-274. Zbl1201.68089
  9. Molnárová, M., Myšková, H., Plavka, J., The robustness of interval fuzzy matrices., Linear Algebra and Its Applications 
  10. Myšková, H., Interval systems of max-separable linear equations., Linear Algebra Appl. 403 (2005), 263-272. Zbl1129.15003MR2140286
  11. Myšková, H., Control solvability of interval systems of max-separable linear equations., Linear Algebra Appl. 416 (2006), 215-223. Zbl1129.15003MR2242726
  12. Myšková, M., Max-min interval systems of linear equations with bounded solution., Kybernetika 48 (2012), 2, 299-308. MR2954328
  13. Plavka, J., Szabó, P., 10.1016/j.dam.2010.11.020, Discrete Appl. Math. 159(2011), 5, 381-388. Zbl1225.15027MR2755915DOI10.1016/j.dam.2010.11.020
  14. Plavka, J., 10.1016/j.dam.2011.11.010, Discrete Appl. Math. 160 (2012), 640-647. MR2876347DOI10.1016/j.dam.2011.11.010
  15. Plavka, J., Vojtáš, P., On the computing the maximal multiple users preferences using strong robustness of interval fuzzy matrices., Submitted. 
  16. Sanchez, E., 10.1016/0165-0114(78)90033-7, Fuzzy Sets and Systems 1 (1978), 69-74. Zbl0366.04001MR0494745DOI10.1016/0165-0114(78)90033-7
  17. Sanchez, E., Medical diagnosis and composite relations., In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, R. R. Yager, eds.), North-Holland, Amsterdam - New York 1979, pp. 437-444. MR0558737
  18. Tan, Yi-Jia, 10.1016/S0024-3795(98)10105-2, Lin. Algebra Appl. 283 (1998), 257-272. Zbl0932.15005MR1657171DOI10.1016/S0024-3795(98)10105-2
  19. Tan, Yi-Jia, On the eigenproblem of matrices over distributive lattices., Lin. Algebra Appl. 374 (2003), 96-106. MR2008782
  20. Terano, T., Tsukamoto, Y., Failure diagnosis by using fuzzy logic., In: Proc. IEEE Conference on Decision Control, New Orleans 1977, pp. 1390-1395. 
  21. Zimmernann, K., Extremální algebra (in Czech)., Ekonom. ústav ČSAV, Praha 1976. 
  22. Zimmermann, U., Linear and Combinatorial Optimization in Ordered Algebraic Structure., North Holland, Amsterdam 1981. MR0609751

Citations in EuDML Documents

top
  1. Ján Plavka, Sergeĭ Sergeev, Characterizing matrices with 𝐗 -simple image eigenspace in max-min semiring
  2. Ján Plavka, Štefan Berežný, -simplicity of interval max-min matrices
  3. Matej Gazda, Ján Plavka, Controllable and tolerable generalized eigenvectors of interval max-plus matrices
  4. Ján Plavka, Computing the greatest 𝐗 -eigenvector of a matrix in max-min algebra
  5. Martin Gavalec, Helena Myšková, Ján Plavka, Daniela Ponce, Tolerance problems for generalized eigenvectors of interval fuzzy matrices

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.