The second order projection method in time for the time-dependent natural convection problem
Applications of Mathematics (2016)
- Volume: 61, Issue: 3, page 299-315
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topQian, Yanxia, and Zhang, Tong. "The second order projection method in time for the time-dependent natural convection problem." Applications of Mathematics 61.3 (2016): 299-315. <http://eudml.org/doc/276985>.
@article{Qian2016,
abstract = {We consider the second-order projection schemes for the time-dependent natural convection problem. By the projection method, the natural convection problem is decoupled into two linear subproblems, and each subproblem is solved more easily than the original one. The error analysis is accomplished by interpreting the second-order time discretization of a perturbed system which approximates the time-dependent natural convection problem, and the rigorous error analysis of the projection schemes is presented. Our main results of the second order projection schemes for the time-dependent natural convection problem are that the convergence for the velocity and temperature are strongly second order in time while that for the pressure is strongly first order in time.},
author = {Qian, Yanxia, Zhang, Tong},
journal = {Applications of Mathematics},
keywords = {natural convection problem; projection method; stability; convergence; natural convection problem; projection method; stability; convergence},
language = {eng},
number = {3},
pages = {299-315},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The second order projection method in time for the time-dependent natural convection problem},
url = {http://eudml.org/doc/276985},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Qian, Yanxia
AU - Zhang, Tong
TI - The second order projection method in time for the time-dependent natural convection problem
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 299
EP - 315
AB - We consider the second-order projection schemes for the time-dependent natural convection problem. By the projection method, the natural convection problem is decoupled into two linear subproblems, and each subproblem is solved more easily than the original one. The error analysis is accomplished by interpreting the second-order time discretization of a perturbed system which approximates the time-dependent natural convection problem, and the rigorous error analysis of the projection schemes is presented. Our main results of the second order projection schemes for the time-dependent natural convection problem are that the convergence for the velocity and temperature are strongly second order in time while that for the pressure is strongly first order in time.
LA - eng
KW - natural convection problem; projection method; stability; convergence; natural convection problem; projection method; stability; convergence
UR - http://eudml.org/doc/276985
ER -
References
top- Araya, R., Barrenechea, G. R., Poza, A. H., Valentin, F., 10.1137/110829283, SIAM J. Numer. Anal. 50 (2012), 669-699. (2012) MR2914281DOI10.1137/110829283
- Chen, G., Feng, M., Zhou, H., Local projection stabilized method on unsteady Navier-Stokes equations with high Reynolds number using equal order interpolation, Appl. Math. Comput. 243 (2014), 465-481. (2014) Zbl1335.76033MR3244494
- Chorin, A. J., 10.1090/S0025-5718-1968-0242392-2, Math. Comput. 22 (1968), 745-762. (1968) Zbl0198.50103MR0242392DOI10.1090/S0025-5718-1968-0242392-2
- Çıbık, A., Kaya, S., 10.1016/j.jmaa.2011.02.020, J. Math. Anal. Appl. 381 (2011), 469-484. (2011) Zbl1331.76066MR2802085DOI10.1016/j.jmaa.2011.02.020
- Du, B., Su, H., Feng, X., 10.1016/j.icheatmasstransfer.2014.12.004, Int. Commun. Heat. Mass. 61 (2015), 128-139. (2015) DOI10.1016/j.icheatmasstransfer.2014.12.004
- He, Y., 10.1137/S0036142901385659, SIAM J. Numer. Anal. 41 (2003), 1263-1285. (2003) Zbl1130.76365MR2034880DOI10.1137/S0036142901385659
- He, Y., 10.1002/num.20065, Numer. Methods Partial Differ. Equations 21 (2005), 875-904. (2005) Zbl1076.76059MR2154224DOI10.1002/num.20065
- Heywood, J. G., Rannacher, R., 10.1137/0719018, SIAM J. Numer. Anal. 19 (1982), 275-311. (1982) Zbl0487.76035MR0650052DOI10.1137/0719018
- Manzari, M. T., 10.1108/09615539910297932, Int. J. Numer. Methods Heat Fluid Flow 9 (1999), 860-877. (1999) Zbl0955.76050DOI10.1108/09615539910297932
- Pyo, J. H., 10.11568/kjm.2014.22.4.645, Korean J. Math. 22 (2014), 645-658. (2014) DOI10.11568/kjm.2014.22.4.645
- Qian, Y. X., Zhang, T., On error estimates of the projection method for the time-dependent natural convection problem: first order scheme, Submitted to Comput. Math. Appl.
- Qian, Y. X., Zhang, T., On error estimates of a higher projection method for the time-dependent natural convection problem, Submitted to Front. Math. China.
- Shen, J., 10.1137/0729004, SIAM J. Numer. Anal. 29 (1992), 57-77. (1992) Zbl0741.76051MR1149084DOI10.1137/0729004
- Shen, J., 10.1007/BF01396220, Numer. Math. 62 (1992), 49-73. (1992) MR1159045DOI10.1007/BF01396220
- Shen, S., The finite element analysis for the conduction-convection problems, Math. Numer. Sin. 16 (1994), 170-182 Chinese. (1994) Zbl0922.76105MR1392611
- Shen, J., 10.1090/S0025-5718-96-00750-8, Math. Comput. 65 (1996), 1039-1065. (1996) Zbl0855.76049MR1348047DOI10.1090/S0025-5718-96-00750-8
- Tabata, M., Tagami, D., 10.1007/s00211-005-0589-2, Numer. Math. 100 (2005), 351-372. (2005) Zbl1082.65090MR2135787DOI10.1007/s00211-005-0589-2
- Témam, R., 10.1007/BF00247696, Arch. Ration. Mech. Anal. French 33 (1969), 377-385. (1969) Zbl0207.16904MR0244654DOI10.1007/BF00247696
- Témam, R., Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and Its Applications, Vol. 2 North-Holland, Amsterdam (1984). (1984) Zbl0568.35002MR0609732
- Vreman, A. W., 10.1016/j.jcp.2014.01.035, J. Comput. Phys. 263 (2014), 353-374. (2014) Zbl1349.76547MR3165701DOI10.1016/j.jcp.2014.01.035
- Zhang, Y., Hou, Y., Zhao, J., 10.1016/j.camwa.2014.06.008, Comput. Math. Appl. 68 (2014), 543-567. (2014) Zbl1362.76056MR3237861DOI10.1016/j.camwa.2014.06.008
- Zhang, T., Tao, Z., Decoupled scheme for time-dependent natural convection problem II: time semidiscreteness, Math. Probl. Eng. 2014 (2014), Article ID 726249, 23 pages. (2014) MR3294924
- Zhang, T., Yuan, J., Si, Z., 10.1002/num.21987, Numer. Methods Partial Differ. Equations 31 (2015), 2135-2168. (2015) Zbl1336.65172MR3403723DOI10.1002/num.21987
- Zhang, X., Zhang, P., 10.1016/j.enganabound.2015.08.005, Eng. Anal. Bound. Elem. 61 (2015), 287-300. (2015) MR3400016DOI10.1016/j.enganabound.2015.08.005
- Zhang, T., Zhao, X., Huang, P., 10.1007/s11075-014-9874-4, Numer. Algorithms 68 (2015), 837-866. (2015) Zbl1311.76074MR3325828DOI10.1007/s11075-014-9874-4
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.