Displaying similar documents to “The second order projection method in time for the time-dependent natural convection problem”

A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations

Yun-Bo Yang, Yao-Lin Jiang, Qiong-Xiang Kong (2019)

Applications of Mathematics

Similarity:

A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher...

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity is present. Various physical parameters appearing...

Stability analysis of the space-time discontinuous Galerkin method for nonstationary nonlinear convection-diffusion problems

Balázsová, Monika, Feistauer, Miloslav, Hadrava, Martin, Kosík, Adam

Similarity:

This paper is concerned with the stability analysis of the space-time discontinuous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion problems. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the discretization of diffusion terms and interior and boundary penalty. Then error estimates are briefly characterized. The main attention is paid to the investigation of unconditional stability of the method....

Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system

Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Space-time approximations of the FitzHugh–Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity...

Conservation schemes for convection-diffusion equations with Robin boundary conditions

Stéphane Flotron, Jacques Rappaz (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this article, we present a numerical scheme based on a finite element method in order to solve a time-dependent convection-diffusion equation problem and satisfy some conservation properties. In particular, our scheme is able to conserve the total energy for a heat equation or the total mass of a solute in a fluid for a concentration equation, even if the approximation of the velocity field is not completely divergence-free. We establish a priori errror estimates for this scheme and...

Energy norm error estimates and convergence analysis for a stabilized Maxwell's equations in conductive media

Eric Lindström, Larisa Beilina (2024)

Applications of Mathematics

Similarity:

The aim of this article is to investigate the well-posedness, stability of solutions to the time-dependent Maxwell's equations for electric field in conductive media in continuous and discrete settings, and study convergence analysis of the employed numerical scheme. The situation we consider would represent a physical problem where a subdomain is emerged in a homogeneous medium, characterized by constant dielectric permittivity and conductivity functions. It is well known that in these...

A stability analysis for finite volume schemes applied to the Maxwell system

Sophie Depeyre (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present in this paper a stability study concerning finite volume schemes applied to the two-dimensional Maxwell system, using rectangular or triangular meshes. A stability condition is proved for the first-order upwind scheme on a rectangular mesh. Stability comparisons between the Yee scheme and the finite volume formulation are proposed. We also compare the stability domains obtained when considering the Maxwell system and the convection equation.

Small-stencil 3D schemes for diffusive flows in porous media

Robert Eymard, Cindy Guichard, Raphaèle Herbin (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.