# Flat outputs of two-input driftless control systems

ESAIM: Control, Optimisation and Calculus of Variations (2012)

- Volume: 18, Issue: 3, page 774-798
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topLi, Shun-Jie, and Respondek, Witold. "Flat outputs of two-input driftless control systems." ESAIM: Control, Optimisation and Calculus of Variations 18.3 (2012): 774-798. <http://eudml.org/doc/277812>.

@article{Li2012,

abstract = {We study the problem of flatness of two-input driftless control systems. Although a
characterization of flat systems of that class is known, the problems of describing all
flat outputs and of calculating them is open and we solve it in the paper. We show that
all x-flat outputs are parameterized by an arbitrary function of three
canonically defined variables. We also construct a system of 1st order PDE’s whose
solutions give all x-flat outputs of two-input driftless systems. We
illustrate our results by describing all x-flat outputs of models of a
nonholonomic car and the n-trailer system. },

author = {Li, Shun-Jie, Respondek, Witold},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Control system; flatness; flat output; feedback equivalence; characteristic distribution; n-trailer system; control system; -trailer system},

language = {eng},

month = {11},

number = {3},

pages = {774-798},

publisher = {EDP Sciences},

title = {Flat outputs of two-input driftless control systems},

url = {http://eudml.org/doc/277812},

volume = {18},

year = {2012},

}

TY - JOUR

AU - Li, Shun-Jie

AU - Respondek, Witold

TI - Flat outputs of two-input driftless control systems

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2012/11//

PB - EDP Sciences

VL - 18

IS - 3

SP - 774

EP - 798

AB - We study the problem of flatness of two-input driftless control systems. Although a
characterization of flat systems of that class is known, the problems of describing all
flat outputs and of calculating them is open and we solve it in the paper. We show that
all x-flat outputs are parameterized by an arbitrary function of three
canonically defined variables. We also construct a system of 1st order PDE’s whose
solutions give all x-flat outputs of two-input driftless systems. We
illustrate our results by describing all x-flat outputs of models of a
nonholonomic car and the n-trailer system.

LA - eng

KW - Control system; flatness; flat output; feedback equivalence; characteristic distribution; n-trailer system; control system; -trailer system

UR - http://eudml.org/doc/277812

ER -

## References

top- E. Aranda-Bricaire, C.H. Moog and J.-B. Pomet, Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization, Geometry in nonlinear control and differential inclusions32, edited by B. Jakuczyk, W. Respondek and T. Rzeżuchowski. Banach Center Publications, Warsaw (1995) 19–33.
- R. Bryant, S.-S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior Differential Systems. Mathematical Sciences Research Institute Publications, Springer-Verlag, New York (1991).
- E. Cartan, Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur certaines familles de courbes, Bulletin de la Société Mathématique de France42, Œuvres complètes2. Part. II, Gauthiers-Villars, Paris (1914) 12–48.
- M. Cheaito and P. Mormul, Rank-2 distributions satisfying the Goursat condition :all their local models in dimension 7 and 8. ESAIM : COCV4 (1999) 137–158.
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats. C. R. Acad. Sci.315 (1992) 619–624.
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems : Introductory theory and examples. Int. J. Control61 (1995) 1327–1361.
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control61 (1999) 1327–1361.
- A. Giaro, A. Kumpera and C. Ruiz, Sur la lecture correcte d’un resultat d’Élie Cartan. C. R. Acad. Sci. Paris287 (1978) 241–244.
- E. Goursat, Leçons sur le problème de Pfaff. Hermann, Paris (1923).
- D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen. Math. Ann.73 (1912) 95–108.
- A. Isidori. Nonlinear Control Systems, 3rd edition. Springer-Verlag, London (1995).
- A. Isidori, C.H. Moog and A. de Luca. A sufficient condition for full linearization via dynamic state feedback, in Proc. 25th IEEE Conf. on Decision & Control. Athens (1986) 203–207.
- B. Jakubczyk, Invariants of dynamic feedback and free systems, in Proceedings of the European Control Conference. Groningen (1993) 1510–1513.
- F. Jean, The car with n trailers : Characterisation of the singular configurations. ESAIM : COCV1 (1996) 241–266.
- A. Kumpera and C. Ruiz, Sur l’équivalence locale des systèmes de Pfaff en drapeau, in Monge-Ampère equations and related topics, edited by F. Gherardelli. Instituto Nazionale di Alta Matematica Francesco Severi, Rome (1982) 201–247.
- J.P. Laumond, Controllability of a multibody robot. IEEE Trans. Robot. Autom.9 (1991) 755–763.
- J.P. Laumond, Robot Motion Planning and Control, Lecture Notes on Control and Information Sciences229. Springer-Verkag, New York (1997).
- Z. Li and J.F. Canny Eds., Nonholonomic Motion Plannging. Internqtional Series in Engineering and Computer Sciences, Kluwer, Dordrecht (1992).
- P. Martin and P. Rouchon, Feedback linearization and driftless systems. CAS internal report No. 446, École des Mines (1993).
- P. Martin and P. Rouchon, Feedback linearization and driftless systems. Math. Contr. Signals Syst.7 (1994) 235–254.
- P. Martin, R.M. Murray and P. Rouchon, Flat systems, in Mathematical Control Theory, Part 2, ICTP Lecture Notes8, edited by A.A. Agrachev. ICTP Publications, Trieste (2002) 705–768.
- P. Mormul, Goursat flags : classification of codimension-one singularities. J. Dyn. Control Syst.6 (2000) 311–330.
- R. Murray, Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems. Math. Control Signals Syst.7 (1994) 58–75.
- R. Murray and S. Sastry, Nonholonomic motion planning : Steering using sinusoids. IEEE Trans. Autom. Control38 (1993) 700–716.
- W. Pasillas-Lépine and W. Respondek, On the geometry of control systems equivalent to canonical contact systems : regular points, singular points and flatness, Proceedings of the 39th IEEE Conference of Decision and Control. Sydney, Australia (2000) 5151–5156.
- W. Pasillas-Lépine and W. Respondek, On the geometry of Goursat structures. ESAIM : COCV6 (2001) 119–181.
- P.S. Pereira da Silva, and C. Corrêa Filho, Relative flatness and flatness of implicit systems. SIAM J. Control Optim.39 (2001) 1929–1951.
- J.-B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions32, edited by B. Jakubczyk, W. Respondek and T. Rzeżuchowski. Banach Center Publications, Warsaw (1995) 319–339.
- W. Respondek, Symmetries and minimal flat outputs of nonlinear control systems, in New Trends in Nonlinear Dynamics and Control, and their Applications, Lecture Notes on Control and Information Sciences295, edited by W. Kang, M. Xiao and C. Borges. Springer Verlag, Berlin, Heidelberg (2003) 65–86.
- O.J. Sørdalen, Conversion of the kinematics of a car with n trailers into a chained form, Proceeding of 1993 International Conference on Robotics and Automation, Atlanta, CA (1993) 382–387.
- M. van Nieuwstadt, M. Rathinam and R.M. Murray, Differential Flatness and Absolute Equivalence of Nonlinear Control Systems. SIAM J. Control Optim. 36 (1998) 1225–1239.
- E. von Weber, Zur Invariantentheorie der Systeme Pfaff’scher Gleichungen. Berichte Verhandlungen der Koniglich Sachsischen Gesellshaft der Wissenshaften Mathematisch-Physikalische Klasse, Leipzig50 (1898) 207–229.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.