On the geometry of some solvable extensions of the Heisenberg group

Mehri Nasehi; Mansour Aghasi

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 3, page 723-740
  • ISSN: 0011-4642

Abstract

top
In this paper we first classify left-invariant generalized Ricci solitons on some solvable extensions of the Heisenberg group in both Riemannian and Lorentzian cases. Then we obtain the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also calculate the energy of an arbitrary left-invariant vector field X on these spaces and obtain all vector fields which are critical points for the energy functional restricted to vector fields of the same length. Furthermore, we determine all homogeneous Lorentzian structures and their types on these spaces and give a complete and explicit description of all parallel and totally geodesic hypersurfaces of these spaces. The non-existence of harmonic maps in the non-abelian case is proved and it is shown that the existence of Einstein, Einstein-like metrics and some equations in the Riemannian case can not be extended to their Lorentzian analogues.

How to cite

top

Nasehi, Mehri, and Aghasi, Mansour. "On the geometry of some solvable extensions of the Heisenberg group." Czechoslovak Mathematical Journal 68.3 (2018): 723-740. <http://eudml.org/doc/294313>.

@article{Nasehi2018,
abstract = {In this paper we first classify left-invariant generalized Ricci solitons on some solvable extensions of the Heisenberg group in both Riemannian and Lorentzian cases. Then we obtain the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also calculate the energy of an arbitrary left-invariant vector field $X$ on these spaces and obtain all vector fields which are critical points for the energy functional restricted to vector fields of the same length. Furthermore, we determine all homogeneous Lorentzian structures and their types on these spaces and give a complete and explicit description of all parallel and totally geodesic hypersurfaces of these spaces. The non-existence of harmonic maps in the non-abelian case is proved and it is shown that the existence of Einstein, Einstein-like metrics and some equations in the Riemannian case can not be extended to their Lorentzian analogues.},
author = {Nasehi, Mehri, Aghasi, Mansour},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Ricci soliton; harmonicity of vector field; homogeneous Lorentzian structure; parallel hypersurfaces},
language = {eng},
number = {3},
pages = {723-740},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the geometry of some solvable extensions of the Heisenberg group},
url = {http://eudml.org/doc/294313},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Nasehi, Mehri
AU - Aghasi, Mansour
TI - On the geometry of some solvable extensions of the Heisenberg group
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 723
EP - 740
AB - In this paper we first classify left-invariant generalized Ricci solitons on some solvable extensions of the Heisenberg group in both Riemannian and Lorentzian cases. Then we obtain the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also calculate the energy of an arbitrary left-invariant vector field $X$ on these spaces and obtain all vector fields which are critical points for the energy functional restricted to vector fields of the same length. Furthermore, we determine all homogeneous Lorentzian structures and their types on these spaces and give a complete and explicit description of all parallel and totally geodesic hypersurfaces of these spaces. The non-existence of harmonic maps in the non-abelian case is proved and it is shown that the existence of Einstein, Einstein-like metrics and some equations in the Riemannian case can not be extended to their Lorentzian analogues.
LA - eng
KW - generalized Ricci soliton; harmonicity of vector field; homogeneous Lorentzian structure; parallel hypersurfaces
UR - http://eudml.org/doc/294313
ER -

References

top
  1. Aghasi, M., Nasehi, M., 10.1515/advgeom-2015-0025, Adv. Geom. 15 (2015), 507-517. (2015) Zbl1328.53062MR3406478DOI10.1515/advgeom-2015-0025
  2. Batat, W., Gadea, P. M., Oubiña, J. A., 10.1007/s10474-012-0232-5, Acta Math. Hung. 138 (2013), 341-364. (2013) Zbl1299.53117MR3018195DOI10.1007/s10474-012-0232-5
  3. Batat, W., Rahmani, S., 10.1007/s00009-010-0070-z, Mediterr. J. Math. 8 (2011), 411-430. (2011) Zbl1232.53057MR2824590DOI10.1007/s00009-010-0070-z
  4. Bouckaert, R. R., 10.1007/b94701, Advances in Artificial Intelligence. Proc. 16th Australian Conf. on AI, Perth, 2003 Lecture Notes in Comput. Sci. 2903. Lecture Notes in Artificial Intelligence. Springer, Berlin (2003), 390-401 T. D. Gedeon et al. (2003) Zbl1205.68488MR2150003DOI10.1007/b94701
  5. Calvaruso, G., 10.1016/j.geomphys.2010.11.001, J. Geom. Phys. 61 (2011), 498-515. (2011) Zbl1221.53093MR2746133DOI10.1016/j.geomphys.2010.11.001
  6. Calvaruso, G., 10.2478/s11533-011-0109-9, Cent. Eur. J. Math. 10 (2012), 411-425. (2012) Zbl1246.53083MR2886549DOI10.2478/s11533-011-0109-9
  7. Calvaruso, G., Three-dimensional homogeneous generalized Ricci solitons, Avaible at arXiv:1503.07767v2 [math.DG]. MR3707300
  8. Calvaruso, G., López, M. Castrillón, 10.1007/s10711-015-0116-2, Geom. Dedicata 181 (2016), 119-136. (2016) Zbl1341.53106MR3475742DOI10.1007/s10711-015-0116-2
  9. Leo, B. De, Veken, J. Van Der, 10.1007/s10711-011-9665-1, Geom. Dedicata 159 (2012), 373-387. (2012) Zbl1247.53076MR2944538DOI10.1007/s10711-011-9665-1
  10. Gadea, P. M., González-Dávila, J. C., Oubiña, J. A., 10.1007/s00605-014-0692-5, Monatsh. Math. 176 (2015), 219-239. (2015) Zbl1321.53057MR3302156DOI10.1007/s00605-014-0692-5
  11. Gadea, P. M., Oubiña, J. A., Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math. 18 (1992), 449-465. (1992) Zbl0760.53029MR1181794
  12. Gil-Medrano, O., Hurtado, A., 10.1016/j.geomphys.2003.09.008, J. Geom. Phys. 51 (2004), 82-100. (2004) Zbl1076.53086MR2078686DOI10.1016/j.geomphys.2003.09.008
  13. Gray, A., 10.1007/BF00151525, Geom. Dedicata 7 (1978), 259-280. (1978) Zbl0378.53018MR0505561DOI10.1007/BF00151525
  14. Nasehi, M., 10.1007/s10587-016-0274-x, Czech. Math. J. 66 (2016), 547-559. (2016) Zbl06604485MR3519620DOI10.1007/s10587-016-0274-x
  15. Nasehi, M., Aghasi, M., 10.1515/gmj-2018-0003, Georgian Math. J. 25, (2018), 1-10. (2018) MR4069964DOI10.1515/gmj-2018-0003
  16. Nurowski, P., Randall, M., 10.1007/s12220-015-9592-8, J. Geom. Anal. 26 (2016), 1280-1345. (2016) Zbl1343.53018MR3472837DOI10.1007/s12220-015-9592-8
  17. Rahmani, S., 10.1016/0393-0440(92)90033-W, J. Geom. Phys. 9 (1992), 295-302 French. (1992) Zbl0752.53036MR1171140DOI10.1016/0393-0440(92)90033-W
  18. Rahmani, N., Rahmani, S., 10.1007/s10711-005-9030-3, Geom. Dedicata 118 (2006), 133-140. (2006) Zbl1094.53065MR2239452DOI10.1007/s10711-005-9030-3
  19. Shin, H., Kim, Y. W., Koh, S.-E., Lee, H. Y., Yang, S.-D., 10.2140/pjm.2013.261.477, Pac. J. Math. 261 (2013), 477-496. (2013) Zbl1347.53050MR3037577DOI10.2140/pjm.2013.261.477

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.