Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings

Vincenzo de Filippis

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 481-492
  • ISSN: 0011-4642

Abstract

top
Let R be a prime ring of characteristic different from 2 and 3, Q r its right Martindale quotient ring, C its extended centroid, L a non-central Lie ideal of R and n 1 a fixed positive integer. Let α be an automorphism of the ring R . An additive map D : R R is called an α -derivation (or a skew derivation) on R if D ( x y ) = D ( x ) y + α ( x ) D ( y ) for all x , y R . An additive mapping F : R R is called a generalized α -derivation (or a generalized skew derivation) on R if there exists a skew derivation D on R such that F ( x y ) = F ( x ) y + α ( x ) D ( y ) for all x , y R . We prove that, if F is a nonzero generalized skew derivation of R such that F ( x ) [ F ( x ) , x ] n = 0 for any x L , then either there exists λ C such that F ( x ) = λ x for all x R , or R M 2 ( C ) and there exist a Q r and λ C such that F ( x ) = a x + x a + λ x for any x R .

How to cite

top

de Filippis, Vincenzo. "Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings." Czechoslovak Mathematical Journal 66.2 (2016): 481-492. <http://eudml.org/doc/280095>.

@article{deFilippis2016,
abstract = {Let $R$ be a prime ring of characteristic different from 2 and 3, $Q_r$ its right Martindale quotient ring, $C$ its extended centroid, $L$ a non-central Lie ideal of $R$ and $n\ge 1$ a fixed positive integer. Let $\alpha $ be an automorphism of the ring $R$. An additive map $D\colon R\rightarrow R$ is called an $\alpha $-derivation (or a skew derivation) on $R$ if $D(xy)=D(x)y+\alpha (x)D(y)$ for all $x,y\in R$. An additive mapping $F\colon R\rightarrow R$ is called a generalized $\alpha $-derivation (or a generalized skew derivation) on $R$ if there exists a skew derivation $D$ on $R$ such that $F(xy)=F(x)y+\alpha (x)D(y)$ for all $x,y\in R$. We prove that, if $F$ is a nonzero generalized skew derivation of $R$ such that $F(x)\* [F(x),x]^n = 0$ for any $x\in L$, then either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$, or $R\subseteq M_2(C)$ and there exist $a\in Q_r$ and $\lambda \in C$ such that $F(x)=ax+xa+\lambda x$ for any $x\in R$.},
author = {de Filippis, Vincenzo},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized skew derivation; Lie ideal; prime ring},
language = {eng},
number = {2},
pages = {481-492},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings},
url = {http://eudml.org/doc/280095},
volume = {66},
year = {2016},
}

TY - JOUR
AU - de Filippis, Vincenzo
TI - Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 481
EP - 492
AB - Let $R$ be a prime ring of characteristic different from 2 and 3, $Q_r$ its right Martindale quotient ring, $C$ its extended centroid, $L$ a non-central Lie ideal of $R$ and $n\ge 1$ a fixed positive integer. Let $\alpha $ be an automorphism of the ring $R$. An additive map $D\colon R\rightarrow R$ is called an $\alpha $-derivation (or a skew derivation) on $R$ if $D(xy)=D(x)y+\alpha (x)D(y)$ for all $x,y\in R$. An additive mapping $F\colon R\rightarrow R$ is called a generalized $\alpha $-derivation (or a generalized skew derivation) on $R$ if there exists a skew derivation $D$ on $R$ such that $F(xy)=F(x)y+\alpha (x)D(y)$ for all $x,y\in R$. We prove that, if $F$ is a nonzero generalized skew derivation of $R$ such that $F(x)\* [F(x),x]^n = 0$ for any $x\in L$, then either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$, or $R\subseteq M_2(C)$ and there exist $a\in Q_r$ and $\lambda \in C$ such that $F(x)=ax+xa+\lambda x$ for any $x\in R$.
LA - eng
KW - generalized skew derivation; Lie ideal; prime ring
UR - http://eudml.org/doc/280095
ER -

References

top
  1. Beidar, K. I., III., W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics 196 Marcel Dekker, New York (1996). (1996) Zbl0847.16001MR1368853
  2. Carini, L., Filippis, V. De, 10.2140/pjm.2000.193.269, Pac. J. Math. 193 (2000), 269-278. (2000) Zbl1009.16034MR1755818DOI10.2140/pjm.2000.193.269
  3. Carini, L., Filippis, V. De, Scudo, G., 10.1007/s00009-014-0493-z, Mediterr. J. Math. 13 (2016), 53-64. (2016) Zbl1342.16039MR3456907DOI10.1007/s00009-014-0493-z
  4. Chang, J.-C., 10.11650/twjm/1500407520, Taiwanese J. Math. 7 (2003), 103-113. (2003) Zbl1048.16018MR1961042DOI10.11650/twjm/1500407520
  5. Chuang, C. L., 10.1006/jabr.1993.1181, J. Algebra 160 (1993), 130-171. (1993) MR1237081DOI10.1006/jabr.1993.1181
  6. Chuang, C.-L., 10.1016/0021-8693(92)90023-F, J. Algebra 149 (1992), 371-404. (1992) MR1172436DOI10.1016/0021-8693(92)90023-F
  7. Chuang, C.-L., 10.1090/S0002-9939-1988-0947646-4, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
  8. Chuang, C.-L., Lee, T.-K., 10.1016/j.jalgebra.2003.12.032, J. Algebra 288 (2005), 59-77. (2005) Zbl1073.16021MR2138371DOI10.1016/j.jalgebra.2003.12.032
  9. Filippis, V. De, Generalized derivations and commutators with nilpotent values on Lie ideals, Tamsui Oxf. J. Math. Sci. 22 (2006), 167-175. (2006) Zbl1133.16022MR2285443
  10. Filippis, V. De, Vincenzo, O. M. Di, 10.1080/00927872.2011.553859, Commun. Algebra 40 (2012), 1918-1932. (2012) Zbl1258.16043MR2945689DOI10.1080/00927872.2011.553859
  11. Filippis, V. De, Scudo, G., 10.1080/03081087.2012.716433, Linear Multilinear Algebra 61 (2013), 917-938. (2013) Zbl1281.16045MR3175336DOI10.1080/03081087.2012.716433
  12. Dhara, B., Kar, S., Mondal, S., 10.1007/s10587-015-0167-4, Czech. Math. J. 65 (140) (2015), 179-190. (2015) Zbl1337.16033MR3336032DOI10.1007/s10587-015-0167-4
  13. Vincenzo, O. M. Di, On the n -th centralizer of a Lie ideal, Boll. Unione Mat. Ital., A Ser. (7) 3 (1989), 77-85. (1989) Zbl0692.16022MR0990089
  14. Herstein, I. N., Topics in Ring Theory, Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). (1969) Zbl0232.16001MR0271135
  15. Jacobson, N., Structure of Rings, Colloquium Publications 37. Amer. Math. Soc. Providence (1964). (1964) MR0222106
  16. Lanski, C., 10.1090/S0002-9939-1993-1132851-9, Proc. Am. Math. Soc. 118 (1993), 731-734. (1993) Zbl0821.16037MR1132851DOI10.1090/S0002-9939-1993-1132851-9
  17. Lanski, C., 10.2140/pjm.1988.134.275, Pac. J. Math. 134 (1988), 275-297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
  18. Lanski, C., Montgomery, S., 10.2140/pjm.1972.42.117, Pac. J. Math. 42 (1972), 117-136. (1972) MR0323839DOI10.2140/pjm.1972.42.117
  19. Lee, T.-K., 10.2140/pjm.2004.216.293, Pac. J. Math. 216 (2004), 293-301. (2004) Zbl1078.16038MR2094547DOI10.2140/pjm.2004.216.293
  20. Lee, T.-K., Liu, K.-S., Generalized skew derivations with algebraic values of bounded degree, Houston J. Math. 39 (2013), 733-740. (2013) Zbl1285.16038MR3126322
  21. III., W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) Zbl0175.03102MR0238897DOI10.1016/0021-8693(69)90029-5
  22. Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1957), 1093-1100. (1957) MR0095863DOI10.1090/S0002-9939-1957-0095863-0
  23. Rowen, L. H., Polynomial Identities in Ring Theory, Pure and Applied Math. 84 Academic Press, New York (1980). (1980) Zbl0461.16001MR0576061
  24. Wang, Y., 10.1080/00927870500387812, Commun. Algebra 34 (2006), 609-615. (2006) Zbl1093.16020MR2211941DOI10.1080/00927870500387812
  25. Wong, T.-L., Derivations with power-central values on multilinear polynomials, Algebra Colloq. 3 (1996), 369-378. (1996) Zbl0864.16031MR1422975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.