Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 481-492
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topde Filippis, Vincenzo. "Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings." Czechoslovak Mathematical Journal 66.2 (2016): 481-492. <http://eudml.org/doc/280095>.
@article{deFilippis2016,
abstract = {Let $R$ be a prime ring of characteristic different from 2 and 3, $Q_r$ its right Martindale quotient ring, $C$ its extended centroid, $L$ a non-central Lie ideal of $R$ and $n\ge 1$ a fixed positive integer. Let $\alpha $ be an automorphism of the ring $R$. An additive map $D\colon R\rightarrow R$ is called an $\alpha $-derivation (or a skew derivation) on $R$ if $D(xy)=D(x)y+\alpha (x)D(y)$ for all $x,y\in R$. An additive mapping $F\colon R\rightarrow R$ is called a generalized $\alpha $-derivation (or a generalized skew derivation) on $R$ if there exists a skew derivation $D$ on $R$ such that $F(xy)=F(x)y+\alpha (x)D(y)$ for all $x,y\in R$. We prove that, if $F$ is a nonzero generalized skew derivation of $R$ such that $F(x)\* [F(x),x]^n = 0$ for any $x\in L$, then either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$, or $R\subseteq M_2(C)$ and there exist $a\in Q_r$ and $\lambda \in C$ such that $F(x)=ax+xa+\lambda x$ for any $x\in R$.},
author = {de Filippis, Vincenzo},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized skew derivation; Lie ideal; prime ring},
language = {eng},
number = {2},
pages = {481-492},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings},
url = {http://eudml.org/doc/280095},
volume = {66},
year = {2016},
}
TY - JOUR
AU - de Filippis, Vincenzo
TI - Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 481
EP - 492
AB - Let $R$ be a prime ring of characteristic different from 2 and 3, $Q_r$ its right Martindale quotient ring, $C$ its extended centroid, $L$ a non-central Lie ideal of $R$ and $n\ge 1$ a fixed positive integer. Let $\alpha $ be an automorphism of the ring $R$. An additive map $D\colon R\rightarrow R$ is called an $\alpha $-derivation (or a skew derivation) on $R$ if $D(xy)=D(x)y+\alpha (x)D(y)$ for all $x,y\in R$. An additive mapping $F\colon R\rightarrow R$ is called a generalized $\alpha $-derivation (or a generalized skew derivation) on $R$ if there exists a skew derivation $D$ on $R$ such that $F(xy)=F(x)y+\alpha (x)D(y)$ for all $x,y\in R$. We prove that, if $F$ is a nonzero generalized skew derivation of $R$ such that $F(x)\* [F(x),x]^n = 0$ for any $x\in L$, then either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$, or $R\subseteq M_2(C)$ and there exist $a\in Q_r$ and $\lambda \in C$ such that $F(x)=ax+xa+\lambda x$ for any $x\in R$.
LA - eng
KW - generalized skew derivation; Lie ideal; prime ring
UR - http://eudml.org/doc/280095
ER -
References
top- Beidar, K. I., III., W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics 196 Marcel Dekker, New York (1996). (1996) Zbl0847.16001MR1368853
- Carini, L., Filippis, V. De, 10.2140/pjm.2000.193.269, Pac. J. Math. 193 (2000), 269-278. (2000) Zbl1009.16034MR1755818DOI10.2140/pjm.2000.193.269
- Carini, L., Filippis, V. De, Scudo, G., 10.1007/s00009-014-0493-z, Mediterr. J. Math. 13 (2016), 53-64. (2016) Zbl1342.16039MR3456907DOI10.1007/s00009-014-0493-z
- Chang, J.-C., 10.11650/twjm/1500407520, Taiwanese J. Math. 7 (2003), 103-113. (2003) Zbl1048.16018MR1961042DOI10.11650/twjm/1500407520
- Chuang, C. L., 10.1006/jabr.1993.1181, J. Algebra 160 (1993), 130-171. (1993) MR1237081DOI10.1006/jabr.1993.1181
- Chuang, C.-L., 10.1016/0021-8693(92)90023-F, J. Algebra 149 (1992), 371-404. (1992) MR1172436DOI10.1016/0021-8693(92)90023-F
- Chuang, C.-L., 10.1090/S0002-9939-1988-0947646-4, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
- Chuang, C.-L., Lee, T.-K., 10.1016/j.jalgebra.2003.12.032, J. Algebra 288 (2005), 59-77. (2005) Zbl1073.16021MR2138371DOI10.1016/j.jalgebra.2003.12.032
- Filippis, V. De, Generalized derivations and commutators with nilpotent values on Lie ideals, Tamsui Oxf. J. Math. Sci. 22 (2006), 167-175. (2006) Zbl1133.16022MR2285443
- Filippis, V. De, Vincenzo, O. M. Di, 10.1080/00927872.2011.553859, Commun. Algebra 40 (2012), 1918-1932. (2012) Zbl1258.16043MR2945689DOI10.1080/00927872.2011.553859
- Filippis, V. De, Scudo, G., 10.1080/03081087.2012.716433, Linear Multilinear Algebra 61 (2013), 917-938. (2013) Zbl1281.16045MR3175336DOI10.1080/03081087.2012.716433
- Dhara, B., Kar, S., Mondal, S., 10.1007/s10587-015-0167-4, Czech. Math. J. 65 (140) (2015), 179-190. (2015) Zbl1337.16033MR3336032DOI10.1007/s10587-015-0167-4
- Vincenzo, O. M. Di, On the -th centralizer of a Lie ideal, Boll. Unione Mat. Ital., A Ser. (7) 3 (1989), 77-85. (1989) Zbl0692.16022MR0990089
- Herstein, I. N., Topics in Ring Theory, Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). (1969) Zbl0232.16001MR0271135
- Jacobson, N., Structure of Rings, Colloquium Publications 37. Amer. Math. Soc. Providence (1964). (1964) MR0222106
- Lanski, C., 10.1090/S0002-9939-1993-1132851-9, Proc. Am. Math. Soc. 118 (1993), 731-734. (1993) Zbl0821.16037MR1132851DOI10.1090/S0002-9939-1993-1132851-9
- Lanski, C., 10.2140/pjm.1988.134.275, Pac. J. Math. 134 (1988), 275-297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
- Lanski, C., Montgomery, S., 10.2140/pjm.1972.42.117, Pac. J. Math. 42 (1972), 117-136. (1972) MR0323839DOI10.2140/pjm.1972.42.117
- Lee, T.-K., 10.2140/pjm.2004.216.293, Pac. J. Math. 216 (2004), 293-301. (2004) Zbl1078.16038MR2094547DOI10.2140/pjm.2004.216.293
- Lee, T.-K., Liu, K.-S., Generalized skew derivations with algebraic values of bounded degree, Houston J. Math. 39 (2013), 733-740. (2013) Zbl1285.16038MR3126322
- III., W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) Zbl0175.03102MR0238897DOI10.1016/0021-8693(69)90029-5
- Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1957), 1093-1100. (1957) MR0095863DOI10.1090/S0002-9939-1957-0095863-0
- Rowen, L. H., Polynomial Identities in Ring Theory, Pure and Applied Math. 84 Academic Press, New York (1980). (1980) Zbl0461.16001MR0576061
- Wang, Y., 10.1080/00927870500387812, Commun. Algebra 34 (2006), 609-615. (2006) Zbl1093.16020MR2211941DOI10.1080/00927870500387812
- Wong, T.-L., Derivations with power-central values on multilinear polynomials, Algebra Colloq. 3 (1996), 369-378. (1996) Zbl0864.16031MR1422975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.