Displaying similar documents to “Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings”

Annihilators of skew derivations with Engel conditions on prime rings

Taylan Pehlivan, Emine Albas (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring Q , C the extended centroid of R and a R . Suppose that δ is a nonzero σ -derivation of R such that a [ δ ( x n ) , x n ] k = 0 for all x R , where σ is an automorphism of R , n and k are fixed positive integers. Then a = 0 .

Multiplicative Lie triple derivations on standard operator algebras

Bilal Ahmad Wani (2021)

Communications in Mathematics

Similarity:

Let 𝒳 be a Banach space of dimension n > 1 and 𝔄 ( 𝒳 ) be a standard operator algebra. In the present paper it is shown that if a mapping d : 𝔄 𝔄 (not necessarily linear) satisfies d ( [ [ U , V ] , W ] ) = [ [ d ( U ) , V ] , W ] + [ [ U , d ( V ) ] , W ] + [ [ U , V ] , d ( W ) ] for all U , V , W 𝔄 , then d = ψ + τ , where ψ is an additive derivation of 𝔄 and τ : 𝔄 𝔽 I vanishes at second commutator [ [ U , V ] , W ] for all U , V , W 𝔄 . Moreover, if d is linear and satisfies the above relation, then there exists an operator S 𝔄 and a linear mapping τ from 𝔄 into 𝔽 I satisfying τ ( [ [ U , V ] , W ] ) = 0 for all U , V , W 𝔄 , such that d ( U ) = S U - U S + τ ( U ) for all U 𝔄 .

Generalized reverse derivations and commutativity of prime rings

Shuliang Huang (2019)

Communications in Mathematics

Similarity:

Let R be a prime ring with center Z ( R ) and I a nonzero right ideal of R . Suppose that R admits a generalized reverse derivation ( F , d ) such that d ( Z ( R ) ) 0 . In the present paper, we shall prove that if one of the following conditions holds: (i) F ( x y ) ± x y Z ( R ) , (ii) F ( [ x , y ] ) ± [ F ( x ) , y ] Z ( R ) , (iii) F ( [ x , y ] ) ± [ F ( x ) , F ( y ) ] Z ( R ) , (iv) F ( x y ) ± F ( x ) F ( y ) Z ( R ) , (v) [ F ( x ) , y ] ± [ x , F ( y ) ] Z ( R ) , (vi) F ( x ) y ± x F ( y ) Z ( R ) for all x , y I , then R is commutative.

( φ , ϕ ) -derivations on semiprime rings and Banach algebras

Bilal Ahmad Wani (2021)

Communications in Mathematics

Similarity:

Let be a semiprime ring with unity e and φ , ϕ be automorphisms of . In this paper it is shown that if satisfies 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒟 ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) for all x and some fixed integer n 2 , then 𝒟 is an ( φ , ϕ )-derivation. Moreover, this result makes it possible to prove that if admits an additive mappings 𝒟 , 𝒢 : satisfying the relations 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒢 ( x ) + 𝒢 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒢 ( x n - 1 ) , 2 𝒢 ( x n ) = 𝒢 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒟 ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) , for all x and some fixed integer n 2 , then 𝒟 and 𝒢 are ( φ , ϕ )derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras. ...

Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings

Vincenzo de Filippis (2016)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring of characteristic different from 2, Q r its right Martindale quotient ring and C its extended centroid. Suppose that F , G are generalized skew derivations of R with the same associated automorphism α , and p ( x 1 , ... , x n ) is a non-central polynomial over C such that [ F ( x ) , α ( y ) ] = G ( [ x , y ] ) for all x , y { p ( r 1 , ... , r n ) : r 1 , ... , r n R } . Then there exists λ C such that F ( x ) = G ( x ) = λ α ( x ) for all x R .

Augmentation quotients for Burnside rings of generalized dihedral groups

Shan Chang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let H be a finite abelian group of odd order, 𝒟 be its generalized dihedral group, i.e., the semidirect product of C 2 acting on H by inverting elements, where C 2 is the cyclic group of order two. Let Ω ( 𝒟 ) be the Burnside ring of 𝒟 , Δ ( 𝒟 ) be the augmentation ideal of Ω ( 𝒟 ) . Denote by Δ n ( 𝒟 ) and Q n ( 𝒟 ) the n th power of Δ ( 𝒟 ) and the n th consecutive quotient group Δ n ( 𝒟 ) / Δ n + 1 ( 𝒟 ) , respectively. This paper provides an explicit -basis for Δ n ( 𝒟 ) and determines the isomorphism class of Q n ( 𝒟 ) for each positive integer n .

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.