Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems

Song Zheng

Kybernetika (2016)

  • Volume: 52, Issue: 2, page 241-257
  • ISSN: 0023-5954

Abstract

top
In this paper the issue of impulsive stabilization and synchronization of uncertain financial hyperchaotic systems with parameters perturbation is investigated. Applying the impulsive control theory, some less conservative and easily verified criteria for the stabilization and synchronization of financial hyperchaotic systems are derived. The control gains and impulsive intervals can be variable. Moreover, the boundaries of the stable region are also estimated according to the equidistant impulse interval. Theoretical analysis and numerical simulations are shown to demonstrate the validity and feasibility of the proposed method.

How to cite

top

Zheng, Song. "Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems." Kybernetika 52.2 (2016): 241-257. <http://eudml.org/doc/281550>.

@article{Zheng2016,
abstract = {In this paper the issue of impulsive stabilization and synchronization of uncertain financial hyperchaotic systems with parameters perturbation is investigated. Applying the impulsive control theory, some less conservative and easily verified criteria for the stabilization and synchronization of financial hyperchaotic systems are derived. The control gains and impulsive intervals can be variable. Moreover, the boundaries of the stable region are also estimated according to the equidistant impulse interval. Theoretical analysis and numerical simulations are shown to demonstrate the validity and feasibility of the proposed method.},
author = {Zheng, Song},
journal = {Kybernetika},
keywords = {financial hyperchaotic system; impulse; stabilization; synchronization; financial hyperchaotic system; impulse; stabilization; synchronization},
language = {eng},
number = {2},
pages = {241-257},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems},
url = {http://eudml.org/doc/281550},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Zheng, Song
TI - Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 2
SP - 241
EP - 257
AB - In this paper the issue of impulsive stabilization and synchronization of uncertain financial hyperchaotic systems with parameters perturbation is investigated. Applying the impulsive control theory, some less conservative and easily verified criteria for the stabilization and synchronization of financial hyperchaotic systems are derived. The control gains and impulsive intervals can be variable. Moreover, the boundaries of the stable region are also estimated according to the equidistant impulse interval. Theoretical analysis and numerical simulations are shown to demonstrate the validity and feasibility of the proposed method.
LA - eng
KW - financial hyperchaotic system; impulse; stabilization; synchronization; financial hyperchaotic system; impulse; stabilization; synchronization
UR - http://eudml.org/doc/281550
ER -

References

top
  1. Abd-Elouahab, M., Hamri, N., Wang, J., 10.1155/2010/270646, Math. Problems Engrg. 2010 (2010), 1-18. Zbl1195.91185DOI10.1155/2010/270646
  2. Agiza, H. N., 10.1016/j.na.2004.04.002, Nonlinear Anal. 58 (2004), 11-20. Zbl1057.34042MR2070803DOI10.1016/j.na.2004.04.002
  3. Cai, G., Yao, L., Hu, P., Fang, X., 10.3934/dcdsb.2013.18.2019, Discrete and Continuous Dynamical Systems - Ser. B 18 (2013), 2019-2028. Zbl1283.34051MR3082308DOI10.3934/dcdsb.2013.18.2019
  4. Cai, G., Zhang, L., Yao., L., Fang, X., 10.1155/2015/572735, Discrete Dynamics in Nature and Society 2015 (2015), 1-11. DOI10.1155/2015/572735
  5. Carroll, T. L., Pecora, L. M., 10.1109/31.75404, IEEE Trans. Circuits Syst. I 38 (1991), 453-456. Zbl1058.37538DOI10.1109/31.75404
  6. Chen, Y. S., Hwang, R. R., Chang, C. C., 10.1016/j.physleta.2010.03.046, Phys. Lett. A 374 (2010), 2254-2258. Zbl1237.34099DOI10.1016/j.physleta.2010.03.046
  7. Deissenberg, C., 10.1007/bf00351465, Econ. Plan. 16 (1980), 49-56. Zbl0466.90018DOI10.1007/bf00351465
  8. Ding, J., Yang, W., Yao, H., A new modified hyperchaotic finance system and its control., Int. J. Nonlinear Sci. 8 (2009), 59-66. Zbl1179.37124MR2557980
  9. Fanti, L., Manfredi, P., 10.1016/j.chaos.2005.11.024, Chaos Solitons Fractals 32 (2007), 736-744. Zbl1133.91482MR2280116DOI10.1016/j.chaos.2005.11.024
  10. Han, Q. L., 10.1016/j.physleta.2006.08.076, Phys. Lett. A 360 (2007), 563-569. Zbl1236.93072DOI10.1016/j.physleta.2006.08.076
  11. Itoh, M., Yang, T., Chua, L. O., 10.1142/s0218127499000961, Int. J. Bifurc. Chaos 9 (1999), 1393-1424. Zbl0963.34029DOI10.1142/s0218127499000961
  12. Itoh, M., Yang, T., L., Chua, O., 10.1142/s0218127401002262, Int. J. Bifurc. Chaos 11 (2001), 551-560. MR1830352DOI10.1142/s0218127401002262
  13. Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., 10.1142/0906, World Scientific, Singapore 1989. Zbl0719.34002MR1082551DOI10.1142/0906
  14. Ma, J., Zhang, Q., Gao, Q., 10.1007/s11071-011-0009-3, Nonlinear Dynam. 67 (2012), 567-572. Zbl1242.92059MR2869224DOI10.1007/s11071-011-0009-3
  15. Mainieri, R., Rehacek, J., 10.1103/physrevlett.82.3042, Phys. Rev. Lett. 82 (1999), 3042-3045. DOI10.1103/physrevlett.82.3042
  16. Nik, H. S., He, P., Talebian, S. T., 10.14736/kyb-2014-4-0596, Kybernetika 50 (2014), 596-615. Zbl1310.34089MR3275087DOI10.14736/kyb-2014-4-0596
  17. Park, Ju. H., 10.1016/j.chaos.2004.11.038, Chaos Solitons Fractals 25 (2005), 579-584. Zbl1092.37514DOI10.1016/j.chaos.2004.11.038
  18. Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
  19. Rosenblum, M. G., Pikovsky, A. S., Kurths, J., 10.1103/physrevlett.76.1804, Phys. Rev. Lett. 76 (1996), 1804-1807. Zbl0898.70015DOI10.1103/physrevlett.76.1804
  20. Sasakura, K., 10.1016/0164-0704(94)90015-9, J. Macroeconom. 16 (1994), 423-444. DOI10.1016/0164-0704(94)90015-9
  21. Strotz, R., McAnulty, J., Naines, J., 10.2307/1905446, Econometrica 21 (1953), 390-411. Zbl0050.36804DOI10.2307/1905446
  22. Wang, Z. L., 10.1016/j.cnsns.2008.06.027, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), 2366-2372. DOI10.1016/j.cnsns.2008.06.027
  23. Yang, T., 10.1007/3-540-47710-1, Springer-Verlag, Berlin 2001. Zbl0996.93003MR1850661DOI10.1007/3-540-47710-1
  24. Yang, T., 10.1109/9.763234, IEEE Trans. Automat. Control 44 (1999), 1081-1083. Zbl1335.93013MR1690562DOI10.1109/9.763234
  25. Yang, T., Chua, L. O., 10.1109/81.633887, IEEE Trans. Circuits Syst. I 44 (1997), 976-988. MR1488197DOI10.1109/81.633887
  26. Yang, T., Yang, L. B., Yang, C. M., 10.1016/s0167-2789(97)00116-4, Physica D 110 (1997), 18-24. Zbl0925.93414MR1490790DOI10.1016/s0167-2789(97)00116-4
  27. Yang, T., Yang, L. B., Yang, C. M., 10.1016/s0375-9601(97)00004-2, Phys. Lett. A 226 (1997), 349-354. DOI10.1016/s0375-9601(97)00004-2
  28. Yu, H., Cai, G., Li, Y., 10.1007/s11071-011-0137-9, Nonlinear Dynam. 67 (2012), 2171-2182. Zbl1242.91225MR2877475DOI10.1007/s11071-011-0137-9
  29. Ma, M., Zhang, H., Cai, J., Zhou, J., Impulsive practical synchronization of n-dimensional nonautonomous systems., Kybernetika 49 (2013), 539-553. Zbl1274.70039MR3117913
  30. Zhao, M., Wang, J., 10.1016/j.amc.2013.12.085, Appl. Math. Comput. 233 (2014), 320-327. Zbl1335.91123MR3214985DOI10.1016/j.amc.2013.12.085
  31. Zheng, S., 10.1007/s11071-013-1015-4, Nonlinear Dynam. 74 (2013), 957-967. Zbl1306.34069MR3127104DOI10.1007/s11071-013-1015-4
  32. Zheng, J., Du, B., 10.1155/2015/782630, Discrete Dynamics in Nature and Society 2015 (2015), 1-9. MR3303289DOI10.1155/2015/782630

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.