Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems
Kybernetika (2016)
- Volume: 52, Issue: 2, page 241-257
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZheng, Song. "Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems." Kybernetika 52.2 (2016): 241-257. <http://eudml.org/doc/281550>.
@article{Zheng2016,
abstract = {In this paper the issue of impulsive stabilization and synchronization of uncertain financial hyperchaotic systems with parameters perturbation is investigated. Applying the impulsive control theory, some less conservative and easily verified criteria for the stabilization and synchronization of financial hyperchaotic systems are derived. The control gains and impulsive intervals can be variable. Moreover, the boundaries of the stable region are also estimated according to the equidistant impulse interval. Theoretical analysis and numerical simulations are shown to demonstrate the validity and feasibility of the proposed method.},
author = {Zheng, Song},
journal = {Kybernetika},
keywords = {financial hyperchaotic system; impulse; stabilization; synchronization; financial hyperchaotic system; impulse; stabilization; synchronization},
language = {eng},
number = {2},
pages = {241-257},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems},
url = {http://eudml.org/doc/281550},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Zheng, Song
TI - Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 2
SP - 241
EP - 257
AB - In this paper the issue of impulsive stabilization and synchronization of uncertain financial hyperchaotic systems with parameters perturbation is investigated. Applying the impulsive control theory, some less conservative and easily verified criteria for the stabilization and synchronization of financial hyperchaotic systems are derived. The control gains and impulsive intervals can be variable. Moreover, the boundaries of the stable region are also estimated according to the equidistant impulse interval. Theoretical analysis and numerical simulations are shown to demonstrate the validity and feasibility of the proposed method.
LA - eng
KW - financial hyperchaotic system; impulse; stabilization; synchronization; financial hyperchaotic system; impulse; stabilization; synchronization
UR - http://eudml.org/doc/281550
ER -
References
top- Abd-Elouahab, M., Hamri, N., Wang, J., 10.1155/2010/270646, Math. Problems Engrg. 2010 (2010), 1-18. Zbl1195.91185DOI10.1155/2010/270646
- Agiza, H. N., 10.1016/j.na.2004.04.002, Nonlinear Anal. 58 (2004), 11-20. Zbl1057.34042MR2070803DOI10.1016/j.na.2004.04.002
- Cai, G., Yao, L., Hu, P., Fang, X., 10.3934/dcdsb.2013.18.2019, Discrete and Continuous Dynamical Systems - Ser. B 18 (2013), 2019-2028. Zbl1283.34051MR3082308DOI10.3934/dcdsb.2013.18.2019
- Cai, G., Zhang, L., Yao., L., Fang, X., 10.1155/2015/572735, Discrete Dynamics in Nature and Society 2015 (2015), 1-11. DOI10.1155/2015/572735
- Carroll, T. L., Pecora, L. M., 10.1109/31.75404, IEEE Trans. Circuits Syst. I 38 (1991), 453-456. Zbl1058.37538DOI10.1109/31.75404
- Chen, Y. S., Hwang, R. R., Chang, C. C., 10.1016/j.physleta.2010.03.046, Phys. Lett. A 374 (2010), 2254-2258. Zbl1237.34099DOI10.1016/j.physleta.2010.03.046
- Deissenberg, C., 10.1007/bf00351465, Econ. Plan. 16 (1980), 49-56. Zbl0466.90018DOI10.1007/bf00351465
- Ding, J., Yang, W., Yao, H., A new modified hyperchaotic finance system and its control., Int. J. Nonlinear Sci. 8 (2009), 59-66. Zbl1179.37124MR2557980
- Fanti, L., Manfredi, P., 10.1016/j.chaos.2005.11.024, Chaos Solitons Fractals 32 (2007), 736-744. Zbl1133.91482MR2280116DOI10.1016/j.chaos.2005.11.024
- Han, Q. L., 10.1016/j.physleta.2006.08.076, Phys. Lett. A 360 (2007), 563-569. Zbl1236.93072DOI10.1016/j.physleta.2006.08.076
- Itoh, M., Yang, T., Chua, L. O., 10.1142/s0218127499000961, Int. J. Bifurc. Chaos 9 (1999), 1393-1424. Zbl0963.34029DOI10.1142/s0218127499000961
- Itoh, M., Yang, T., L., Chua, O., 10.1142/s0218127401002262, Int. J. Bifurc. Chaos 11 (2001), 551-560. MR1830352DOI10.1142/s0218127401002262
- Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., 10.1142/0906, World Scientific, Singapore 1989. Zbl0719.34002MR1082551DOI10.1142/0906
- Ma, J., Zhang, Q., Gao, Q., 10.1007/s11071-011-0009-3, Nonlinear Dynam. 67 (2012), 567-572. Zbl1242.92059MR2869224DOI10.1007/s11071-011-0009-3
- Mainieri, R., Rehacek, J., 10.1103/physrevlett.82.3042, Phys. Rev. Lett. 82 (1999), 3042-3045. DOI10.1103/physrevlett.82.3042
- Nik, H. S., He, P., Talebian, S. T., 10.14736/kyb-2014-4-0596, Kybernetika 50 (2014), 596-615. Zbl1310.34089MR3275087DOI10.14736/kyb-2014-4-0596
- Park, Ju. H., 10.1016/j.chaos.2004.11.038, Chaos Solitons Fractals 25 (2005), 579-584. Zbl1092.37514DOI10.1016/j.chaos.2004.11.038
- Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
- Rosenblum, M. G., Pikovsky, A. S., Kurths, J., 10.1103/physrevlett.76.1804, Phys. Rev. Lett. 76 (1996), 1804-1807. Zbl0898.70015DOI10.1103/physrevlett.76.1804
- Sasakura, K., 10.1016/0164-0704(94)90015-9, J. Macroeconom. 16 (1994), 423-444. DOI10.1016/0164-0704(94)90015-9
- Strotz, R., McAnulty, J., Naines, J., 10.2307/1905446, Econometrica 21 (1953), 390-411. Zbl0050.36804DOI10.2307/1905446
- Wang, Z. L., 10.1016/j.cnsns.2008.06.027, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), 2366-2372. DOI10.1016/j.cnsns.2008.06.027
- Yang, T., 10.1007/3-540-47710-1, Springer-Verlag, Berlin 2001. Zbl0996.93003MR1850661DOI10.1007/3-540-47710-1
- Yang, T., 10.1109/9.763234, IEEE Trans. Automat. Control 44 (1999), 1081-1083. Zbl1335.93013MR1690562DOI10.1109/9.763234
- Yang, T., Chua, L. O., 10.1109/81.633887, IEEE Trans. Circuits Syst. I 44 (1997), 976-988. MR1488197DOI10.1109/81.633887
- Yang, T., Yang, L. B., Yang, C. M., 10.1016/s0167-2789(97)00116-4, Physica D 110 (1997), 18-24. Zbl0925.93414MR1490790DOI10.1016/s0167-2789(97)00116-4
- Yang, T., Yang, L. B., Yang, C. M., 10.1016/s0375-9601(97)00004-2, Phys. Lett. A 226 (1997), 349-354. DOI10.1016/s0375-9601(97)00004-2
- Yu, H., Cai, G., Li, Y., 10.1007/s11071-011-0137-9, Nonlinear Dynam. 67 (2012), 2171-2182. Zbl1242.91225MR2877475DOI10.1007/s11071-011-0137-9
- Ma, M., Zhang, H., Cai, J., Zhou, J., Impulsive practical synchronization of n-dimensional nonautonomous systems., Kybernetika 49 (2013), 539-553. Zbl1274.70039MR3117913
- Zhao, M., Wang, J., 10.1016/j.amc.2013.12.085, Appl. Math. Comput. 233 (2014), 320-327. Zbl1335.91123MR3214985DOI10.1016/j.amc.2013.12.085
- Zheng, S., 10.1007/s11071-013-1015-4, Nonlinear Dynam. 74 (2013), 957-967. Zbl1306.34069MR3127104DOI10.1007/s11071-013-1015-4
- Zheng, J., Du, B., 10.1155/2015/782630, Discrete Dynamics in Nature and Society 2015 (2015), 1-9. MR3303289DOI10.1155/2015/782630
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.