Stability of infinite ranges and kernels
Studia Mathematica (2006)
- Volume: 174, Issue: 1, page 61-73
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topK.-H. Förster, and V. Müller. "Stability of infinite ranges and kernels." Studia Mathematica 174.1 (2006): 61-73. <http://eudml.org/doc/284481>.
@article{K2006,
abstract = {Let A(·) be a regular function defined on a connected metric space G whose values are mutually commuting essentially Kato operators in a Banach space. Then the spaces $R^\{∞\}(A(z))$ and $\overline\{N^\{∞\}(A(z))\}$ do not depend on z ∈ G. This generalizes results of B. Aupetit and J. Zemánek.},
author = {K.-H. Förster, V. Müller},
journal = {Studia Mathematica},
keywords = {Kato operators; essentially Kato operators; regular operator-valued functions; infinite ranges and kernels},
language = {eng},
number = {1},
pages = {61-73},
title = {Stability of infinite ranges and kernels},
url = {http://eudml.org/doc/284481},
volume = {174},
year = {2006},
}
TY - JOUR
AU - K.-H. Förster
AU - V. Müller
TI - Stability of infinite ranges and kernels
JO - Studia Mathematica
PY - 2006
VL - 174
IS - 1
SP - 61
EP - 73
AB - Let A(·) be a regular function defined on a connected metric space G whose values are mutually commuting essentially Kato operators in a Banach space. Then the spaces $R^{∞}(A(z))$ and $\overline{N^{∞}(A(z))}$ do not depend on z ∈ G. This generalizes results of B. Aupetit and J. Zemánek.
LA - eng
KW - Kato operators; essentially Kato operators; regular operator-valued functions; infinite ranges and kernels
UR - http://eudml.org/doc/284481
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.