Characterizing matrices with -simple image eigenspace in max-min semiring
Kybernetika (2016)
- Volume: 52, Issue: 4, page 497-513
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPlavka, Ján, and Sergeev, Sergeĭ. "Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring." Kybernetika 52.4 (2016): 497-513. <http://eudml.org/doc/286782>.
@article{Plavka2016,
abstract = {A matrix $A$ is said to have $X$-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox\{$X$\}=\lbrace x\colon \underline\{x\}\le x\le \overline\{x\}\rbrace $ is the unique solution of the system $A\otimes y=x$ in $\mbox\{$X$\}$. The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.},
author = {Plavka, Ján, Sergeev, Sergeĭ},
journal = {Kybernetika},
keywords = {max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set; max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set},
language = {eng},
number = {4},
pages = {497-513},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Characterizing matrices with $\{\bf \{X\}\}$-simple image eigenspace in max-min semiring},
url = {http://eudml.org/doc/286782},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Plavka, Ján
AU - Sergeev, Sergeĭ
TI - Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 4
SP - 497
EP - 513
AB - A matrix $A$ is said to have $X$-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{$X$}=\lbrace x\colon \underline{x}\le x\le \overline{x}\rbrace $ is the unique solution of the system $A\otimes y=x$ in $\mbox{$X$}$. The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
LA - eng
KW - max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set; max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set
UR - http://eudml.org/doc/286782
ER -
References
top- Butkovič, P., 10.1016/s0166-218x(00)00212-2, Discrete Appl. Math. 105 (2000), 73-86. Zbl0976.15013MR1780462DOI10.1016/s0166-218x(00)00212-2
- Butkovič, P., 10.1007/978-1-84996-299-5, Springer, 2010. DOI10.1007/978-1-84996-299-5
- Butkovič, P., Schneider, H., Sergeev, S., 10.1137/110837942, SIAM J. Control Optim. 50 (2012), 5, 3029-3051. MR3022097DOI10.1137/110837942
- Cechlárová, K., 10.1016/0165-0114(95)00021-c, Fuzzy Sets and Systems 75 (1995), 165-177. Zbl0852.15011MR1358219DOI10.1016/0165-0114(95)00021-c
- Cechlárová, K., Efficient computation of the greatest eigenvector in fuzzy algebra., Tatra Mt. Math. Publ. 12 (1997), 73-79. Zbl0963.65041MR1607194
- Cechlárová, K., 10.1016/0024-3795(94)00338-6, Linear Algebra Appl. 246 (1996), 97-112. Zbl0866.15009MR1407661DOI10.1016/0024-3795(94)00338-6
- Cuninghame-Green, R. A., 10.1016/s1076-5670(08)70083-1, Adv. Imaging Electron Phys. 90 (1995), 1-121. Zbl0739.90073DOI10.1016/s1076-5670(08)70083-1
- Nola, A. Di, Gerla, B., 10.1090/conm/377/06988, In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. Zbl1081.06009MR2149001DOI10.1090/conm/377/06988
- Nola, A. Di, Russo, C., 10.1016/j.ins.2006.09.002, Inform. Sci. 177 (2007), 1481-1498. Zbl1114.06009MR2307173DOI10.1016/j.ins.2006.09.002
- Gavalec, M., Periodicity in Extremal Algebra., Gaudeamus, Hradec Králové 2004.
- Gavalec, M., Plavka, J., Fast algorithm for extremal biparametric eigenproblem., Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.
- Gavalec, M., Zimmermann, K., Classification of solutions to systems of two-sided equations with interval coefficients., Int. J. Pure Appl. Math. 45 (2008), 533-542. Zbl1154.65036MR2426231
- Golan, J. S., 10.1007/978-94-015-9333-5, Springer, 1999. Zbl0947.16034MR1746739DOI10.1007/978-94-015-9333-5
- Gondran, M., Minoux, M., Graphs, dioids and semirings: new models and algorithms., Springer, 2008. Zbl1201.16038MR2389137
- Heidergott, B., Olsder, G.-J., Woude, J. van der, 10.1515/9781400865239, Princeton University Press, 2005. DOI10.1515/9781400865239
- Kolokoltsov, V. N., Maslov, V. P., 10.1007/978-94-015-8901-7, Kluwer, Dordrecht 1997. Zbl0941.93001MR1447629DOI10.1007/978-94-015-8901-7
- Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R., 10.1007/978-1-4757-2793-7, Kluwer Academic Publishers, Dordrecht-Boston-London 1998. Zbl0945.68077MR1491092DOI10.1007/978-1-4757-2793-7
- Litvinov, G. L., (eds.), V. P. Maslov, 10.1090/conm/377, AMS, Contemporary Mathematics 377, 2005. Zbl1069.00011MR2145152DOI10.1090/conm/377
- Litvinov, G. L., (eds.), S. N. Sergeev, 10.1090/conm/495, AMS, Contemporary Mathematics 495, 2009. Zbl1291.00065MR2581510DOI10.1090/conm/495
- Molnárová, M., Myšková, H., Plavka, J., 10.1016/j.laa.2012.12.020, Linear Algebra Appl. 438 (2013), 8, 3350-3364. MR3023281DOI10.1016/j.laa.2012.12.020
- Myšková, H., Plavka, J., 10.1016/j.laa.2012.11.026, Linear Algebra Appl. 438 (2013), 6, 2757-2769. MR3008532DOI10.1016/j.laa.2012.11.026
- Myšková, H., 10.2478/v10198-012-0033-3, Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI10.2478/v10198-012-0033-3
- Myšková, H., 10.2478/v10198-012-0032-4, Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI10.2478/v10198-012-0032-4
- Plavka, J., Szabó, P., The algorithm for the eigenproblem of an -triangular Toeplitz matrices in max-plus algebra., Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
- Plavka, J., Szabó, P., 10.1016/j.dam.2010.11.020, Discrete Appl. Math. 159 (2011), 5, 381-388. Zbl1225.15027MR2755915DOI10.1016/j.dam.2010.11.020
- Plavka, J., On the weak robustness of fuzzy matrices., Kybernetika 49 (2013), 1, 128-140. Zbl1267.15026MR3097386
- Rohn, J., 10.1016/0024-3795(89)90004-9, Linear Algebra Appl. 126 (1989), 39-78. Zbl1061.15003MR1040771DOI10.1016/0024-3795(89)90004-9
- Sanchez, E., 10.1016/0165-0114(78)90033-7, Fuzzy Sets and Systems 1 (1978), 69-74. Zbl0366.04001MR0494745DOI10.1016/0165-0114(78)90033-7
- Sergeev, S., 10.1016/j.laa.2011.02.038, Linear Algebra Appl. 435 (2011), 7, 1736-1757. Zbl1226.15017MR2810668DOI10.1016/j.laa.2011.02.038
- Tan, Yi-Jia, 10.1016/s0024-3795(98)10105-2, Linear Algebra Appl. 283 (1998), 257-272. Zbl0932.15005MR1657171DOI10.1016/s0024-3795(98)10105-2
- Zimmernann, K., Extremální algebra (in Czech)., Ekon.ústav ČSAV Praha, 1976.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.