Characterizing matrices with 𝐗 -simple image eigenspace in max-min semiring

Ján Plavka; Sergeĭ Sergeev

Kybernetika (2016)

  • Volume: 52, Issue: 4, page 497-513
  • ISSN: 0023-5954

Abstract

top
A matrix A is said to have 𝐗 -simple image eigenspace if any eigenvector x belonging to the interval 𝐗 = { x : x ̲ x x ¯ } is the unique solution of the system A y = x in 𝐗 . The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.

How to cite

top

Plavka, Ján, and Sergeev, Sergeĭ. "Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring." Kybernetika 52.4 (2016): 497-513. <http://eudml.org/doc/286782>.

@article{Plavka2016,
abstract = {A matrix $A$ is said to have $X$-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox\{$X$\}=\lbrace x\colon \underline\{x\}\le x\le \overline\{x\}\rbrace $ is the unique solution of the system $A\otimes y=x$ in $\mbox\{$X$\}$. The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.},
author = {Plavka, Ján, Sergeev, Sergeĭ},
journal = {Kybernetika},
keywords = {max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set; max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set},
language = {eng},
number = {4},
pages = {497-513},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Characterizing matrices with $\{\bf \{X\}\}$-simple image eigenspace in max-min semiring},
url = {http://eudml.org/doc/286782},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Plavka, Ján
AU - Sergeev, Sergeĭ
TI - Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 4
SP - 497
EP - 513
AB - A matrix $A$ is said to have $X$-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{$X$}=\lbrace x\colon \underline{x}\le x\le \overline{x}\rbrace $ is the unique solution of the system $A\otimes y=x$ in $\mbox{$X$}$. The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
LA - eng
KW - max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set; max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set
UR - http://eudml.org/doc/286782
ER -

References

top
  1. Butkovič, P., 10.1016/s0166-218x(00)00212-2, Discrete Appl. Math. 105 (2000), 73-86. Zbl0976.15013MR1780462DOI10.1016/s0166-218x(00)00212-2
  2. Butkovič, P., 10.1007/978-1-84996-299-5, Springer, 2010. DOI10.1007/978-1-84996-299-5
  3. Butkovič, P., Schneider, H., Sergeev, S., 10.1137/110837942, SIAM J. Control Optim. 50 (2012), 5, 3029-3051. MR3022097DOI10.1137/110837942
  4. Cechlárová, K., 10.1016/0165-0114(95)00021-c, Fuzzy Sets and Systems 75 (1995), 165-177. Zbl0852.15011MR1358219DOI10.1016/0165-0114(95)00021-c
  5. Cechlárová, K., Efficient computation of the greatest eigenvector in fuzzy algebra., Tatra Mt. Math. Publ. 12 (1997), 73-79. Zbl0963.65041MR1607194
  6. Cechlárová, K., 10.1016/0024-3795(94)00338-6, Linear Algebra Appl. 246 (1996), 97-112. Zbl0866.15009MR1407661DOI10.1016/0024-3795(94)00338-6
  7. Cuninghame-Green, R. A., 10.1016/s1076-5670(08)70083-1, Adv. Imaging Electron Phys. 90 (1995), 1-121. Zbl0739.90073DOI10.1016/s1076-5670(08)70083-1
  8. Nola, A. Di, Gerla, B., 10.1090/conm/377/06988, In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. Zbl1081.06009MR2149001DOI10.1090/conm/377/06988
  9. Nola, A. Di, Russo, C., 10.1016/j.ins.2006.09.002, Inform. Sci. 177 (2007), 1481-1498. Zbl1114.06009MR2307173DOI10.1016/j.ins.2006.09.002
  10. Gavalec, M., Periodicity in Extremal Algebra., Gaudeamus, Hradec Králové 2004. 
  11. Gavalec, M., Plavka, J., Fast algorithm for extremal biparametric eigenproblem., Acta Electrotechnica et Informatica 7 (2007), 3, 1-5. 
  12. Gavalec, M., Zimmermann, K., Classification of solutions to systems of two-sided equations with interval coefficients., Int. J. Pure Appl. Math. 45 (2008), 533-542. Zbl1154.65036MR2426231
  13. Golan, J. S., 10.1007/978-94-015-9333-5, Springer, 1999. Zbl0947.16034MR1746739DOI10.1007/978-94-015-9333-5
  14. Gondran, M., Minoux, M., Graphs, dioids and semirings: new models and algorithms., Springer, 2008. Zbl1201.16038MR2389137
  15. Heidergott, B., Olsder, G.-J., Woude, J. van der, 10.1515/9781400865239, Princeton University Press, 2005. DOI10.1515/9781400865239
  16. Kolokoltsov, V. N., Maslov, V. P., 10.1007/978-94-015-8901-7, Kluwer, Dordrecht 1997. Zbl0941.93001MR1447629DOI10.1007/978-94-015-8901-7
  17. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R., 10.1007/978-1-4757-2793-7, Kluwer Academic Publishers, Dordrecht-Boston-London 1998. Zbl0945.68077MR1491092DOI10.1007/978-1-4757-2793-7
  18. Litvinov, G. L., (eds.), V. P. Maslov, 10.1090/conm/377, AMS, Contemporary Mathematics 377, 2005. Zbl1069.00011MR2145152DOI10.1090/conm/377
  19. Litvinov, G. L., (eds.), S. N. Sergeev, 10.1090/conm/495, AMS, Contemporary Mathematics 495, 2009. Zbl1291.00065MR2581510DOI10.1090/conm/495
  20. Molnárová, M., Myšková, H., Plavka, J., 10.1016/j.laa.2012.12.020, Linear Algebra Appl. 438 (2013), 8, 3350-3364. MR3023281DOI10.1016/j.laa.2012.12.020
  21. Myšková, H., Plavka, J., 10.1016/j.laa.2012.11.026, Linear Algebra Appl. 438 (2013), 6, 2757-2769. MR3008532DOI10.1016/j.laa.2012.11.026
  22. Myšková, H., 10.2478/v10198-012-0033-3, Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI10.2478/v10198-012-0033-3
  23. Myšková, H., 10.2478/v10198-012-0032-4, Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI10.2478/v10198-012-0032-4
  24. Plavka, J., Szabó, P., The O ( n 2 ) algorithm for the eigenproblem of an ϵ -triangular Toeplitz matrices in max-plus algebra., Acta Electrotechnica et Informatica 9 (2009), 4, 50-54. 
  25. Plavka, J., Szabó, P., 10.1016/j.dam.2010.11.020, Discrete Appl. Math. 159 (2011), 5, 381-388. Zbl1225.15027MR2755915DOI10.1016/j.dam.2010.11.020
  26. Plavka, J., On the weak robustness of fuzzy matrices., Kybernetika 49 (2013), 1, 128-140. Zbl1267.15026MR3097386
  27. Rohn, J., 10.1016/0024-3795(89)90004-9, Linear Algebra Appl. 126 (1989), 39-78. Zbl1061.15003MR1040771DOI10.1016/0024-3795(89)90004-9
  28. Sanchez, E., 10.1016/0165-0114(78)90033-7, Fuzzy Sets and Systems 1 (1978), 69-74. Zbl0366.04001MR0494745DOI10.1016/0165-0114(78)90033-7
  29. Sergeev, S., 10.1016/j.laa.2011.02.038, Linear Algebra Appl. 435 (2011), 7, 1736-1757. Zbl1226.15017MR2810668DOI10.1016/j.laa.2011.02.038
  30. Tan, Yi-Jia, 10.1016/s0024-3795(98)10105-2, Linear Algebra Appl. 283 (1998), 257-272. Zbl0932.15005MR1657171DOI10.1016/s0024-3795(98)10105-2
  31. Zimmernann, K., Extremální algebra (in Czech)., Ekon.ústav ČSAV Praha, 1976. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.