Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation

Zhi-cai Ma; Yong-zheng Sun; Hong-jun Shi

Kybernetika (2016)

  • Volume: 52, Issue: 4, page 607-628
  • ISSN: 0023-5954

Abstract

top
In this paper, the finite-time stochastic outer synchronization and generalized outer synchronization between two complex dynamic networks with time delay and noise perturbation are studied. Based on the finite-time stability theory, sufficient conditions for the finite-time outer synchronization are obtained. Numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of time delay and noise perturbation on the convergence time are also numerically demonstrated.

How to cite

top

Ma, Zhi-cai, Sun, Yong-zheng, and Shi, Hong-jun. "Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation." Kybernetika 52.4 (2016): 607-628. <http://eudml.org/doc/286816>.

@article{Ma2016,
abstract = {In this paper, the finite-time stochastic outer synchronization and generalized outer synchronization between two complex dynamic networks with time delay and noise perturbation are studied. Based on the finite-time stability theory, sufficient conditions for the finite-time outer synchronization are obtained. Numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of time delay and noise perturbation on the convergence time are also numerically demonstrated.},
author = {Ma, Zhi-cai, Sun, Yong-zheng, Shi, Hong-jun},
journal = {Kybernetika},
keywords = {complex dynamic networks; synchronization; time delay; noise perturbation; complex dynamic networks; synchronization; time delay; noise perturbation},
language = {eng},
number = {4},
pages = {607-628},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation},
url = {http://eudml.org/doc/286816},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Ma, Zhi-cai
AU - Sun, Yong-zheng
AU - Shi, Hong-jun
TI - Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 4
SP - 607
EP - 628
AB - In this paper, the finite-time stochastic outer synchronization and generalized outer synchronization between two complex dynamic networks with time delay and noise perturbation are studied. Based on the finite-time stability theory, sufficient conditions for the finite-time outer synchronization are obtained. Numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of time delay and noise perturbation on the convergence time are also numerically demonstrated.
LA - eng
KW - complex dynamic networks; synchronization; time delay; noise perturbation; complex dynamic networks; synchronization; time delay; noise perturbation
UR - http://eudml.org/doc/286816
ER -

References

top
  1. Arenas, A., Kurths, J., Moreno, Y., Zhou, C. S., 10.1016/j.physrep.2008.09.002, Phys. Rep. 469 (2008), 93-153. MR2477097DOI10.1016/j.physrep.2008.09.002
  2. Asheghan, M. M., Míguez, J., Hamidi-Beheshti, M. T., Tavazoe, M. S., 10.1063/1.3629986, Chaos 21 (2011), 033121. MR3388455DOI10.1063/1.3629986
  3. Barabasi, A. L., 10.1126/science.1173299, Science 325 (2009), 412-413. MR2548299DOI10.1126/science.1173299
  4. Barabasi, A. L., Albert, R., 10.1126/science.286.5439.509, Science 286 (1999), 509-512. Zbl1226.05223MR2091634DOI10.1126/science.286.5439.509
  5. Blat, S. P., Bernstein, D. S., 10.1137/s0363012997321358, SIAM. J. Control Optim. 38 (2000), 751-766. MR1756893DOI10.1137/s0363012997321358
  6. Guo, W. L., Austin, F., Chen, S.H., 10.1016/j.cnsns.2009.06.016, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1631-1639. Zbl1221.34213MR2576789DOI10.1016/j.cnsns.2009.06.016
  7. Hardy, G., Littlewood, J., Polya, G., Inequalities., Cambridge University Press 1988. Zbl0634.26008MR0944909
  8. Hauschildt, B., Jason, N. B., Balanov, A., Scholl, E., 10.1103/physreve.74.051906, Phys. Rev. E 74 (2006), 051906. MR2293732DOI10.1103/physreve.74.051906
  9. Huang, J. J., Li, C. D., Huang, T. W., He, X., 10.1016/j.neucom.2014.02.050, Neurocomputing 139 (2013), 145-149. DOI10.1016/j.neucom.2014.02.050
  10. Huang, X. Q., Lin, W., Yang, B., 10.1016/j.automatica.2004.11.036, Automatica 41 (2005), 881-888. MR2157720DOI10.1016/j.automatica.2004.11.036
  11. Kazanovich, Y. B., Borisyuk, R. M., 10.1007/s004220050080, Biological Cybernetics 71 (1994), 177-185. Zbl0804.92002MR1347145DOI10.1007/s004220050080
  12. Kloeden, P. E., Platen, E., 10.1007/978-3-662-12616-5, Springer, Heidelberg 1992. Zbl1216.60052MR1214374DOI10.1007/978-3-662-12616-5
  13. Korniss, G., 10.1103/physreve.75.051121, Phys. Rev. E 75 (2007), 051121. DOI10.1103/physreve.75.051121
  14. Li, H. Y., Hu, Y. A., Wang, R. Q., Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties., Kybernetika 49 (2013), 554-567. MR3117914
  15. Li, L., Kurths, J., Peng, H., Yang, Y., Luo, Q., 10.1140/epjb/e2013-30517-6, The European Physical Journal B 86 (2013), 1-9. MR3082432DOI10.1140/epjb/e2013-30517-6
  16. Lin, W., Chen, G. R., 10.1063/1.2183734, Chaos 16 (2006), 013134. Zbl1144.37375MR2220550DOI10.1063/1.2183734
  17. Lü, J. H., Yu, X. H., Chen, G. R., 10.1016/j.physa.2003.10.052, Physica A 334 (2004), 281-302. MR2044940DOI10.1016/j.physa.2003.10.052
  18. Lynnyk, V., Čelikovský, S., On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption., Kybernetika 46 (2010), 1-18. Zbl1190.93038MR2666891
  19. Mei, J., Jiang, M. H., Xu, W. M., Wang, B., 10.1016/j.cnsns.2012.11.009, Commun. Nonlinear Sci. Numer. Simulat. 18 (2013), 2462-2478. Zbl1311.34157MR3042052DOI10.1016/j.cnsns.2012.11.009
  20. Nagail, K. H., Kori, H., 10.1103/physreve.81.065202, Phys. Rev.E 81 (2010), 065202. DOI10.1103/physreve.81.065202
  21. Pecora, L. M., Carrol, T. L., 10.1103/physrevlett.80.2109, Phys. Rev. Lett. 80 (1998), 2109-2112. DOI10.1103/physrevlett.80.2109
  22. Sun, W. G., Li, S. X., 10.1007/s11071-014-1311-7, Nonlinear Dyn. 77 (2014), 481-489. Zbl1314.34121MR3229176DOI10.1007/s11071-014-1311-7
  23. Sun, Y. Z., Li, W., Ruan, J., 10.1016/j.cnsns.2012.08.040, Commun. Nonliear Sci. Numer. Simul. 18 (2013), 989-998. MR2996611DOI10.1016/j.cnsns.2012.08.040
  24. Sun, F., Peng, H., Luo, Q., Li, L., Yang, Y., 10.1063/1.3127599, Chaos 19 (2009), 023109. Zbl1309.34106MR2548749DOI10.1063/1.3127599
  25. Sun, Y. Z., Ruan, J., 10.1063/1.3262488, Chaos 19 (2009), 043113. DOI10.1063/1.3262488
  26. Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X., 10.1007/s11071-013-1145-8, Nonlinear Dyn. 76 (2014), 519-528. Zbl1319.37028MR3189189DOI10.1007/s11071-013-1145-8
  27. Tang, H. W., Chen, L., Lu, J. A., Tse, C. K., 10.1016/j.physa.2008.05.047, Physica A 387 (2008), 5623-5630. DOI10.1016/j.physa.2008.05.047
  28. Wang, G. J., Cao, J. D., Lu, J. Q., 10.1016/j.physa.2009.12.014, Physica A 389 (2010), 1480-1488. DOI10.1016/j.physa.2009.12.014
  29. Wang, X. F., Chen, G. R., 10.1109/81.974874, IEEE Trans. Circuits Syst. I 49 (2002), 54-62. MR1874226DOI10.1109/81.974874
  30. Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., 10.1016/j.nonrwa.2008.08.010, Nonlinear Anal.: Real World Appl. 10 (2009), 2842-2849. Zbl1183.34072MR2523247DOI10.1016/j.nonrwa.2008.08.010
  31. Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., 10.1016/j.cnsns.2008.08.013, Commun. Nonlinear Sci. Numer. Simulat. 14 (2012), 2728-2733. MR2483882DOI10.1016/j.cnsns.2008.08.013
  32. Wang, W., Li, L., Peng, H., Xiao, J., Yang, Y., 10.1016/j.neunet.2014.01.010, Neural Networks. 53 (2014), 8-14. Zbl1307.93038DOI10.1016/j.neunet.2014.01.010
  33. Wang, W. P., Peng, H. P., Li, L. X., Xiao, J. H., Yang, Y. X., 10.1007/s11063-013-9335-4, Neural Process. Lett. 41 (2015), 71-88. DOI10.1007/s11063-013-9335-4
  34. Watts, D. J., Strogatz, S. H., 10.1038/30918, Nature 393 (1998), 440-442. DOI10.1038/30918
  35. Yang, X. S., Cao, J. D., 10.1016/j.apm.2010.03.012, App. Math. Modeling. 34 (2010), 3631-3641. Zbl1201.37118MR2651795DOI10.1016/j.apm.2010.03.012
  36. Yu, W. W., Chen, G. R., Lü, J. H., On pinning synchronization of complex dynamical networks. Zbl1158.93308
  37. Zhou, X. B., Jiang, M. R., Huang, Y. Q., 10.14736/kyb-2014-4-0632, Kybernetika 50 (2014), 632-642. Zbl1311.34120MR3275089DOI10.14736/kyb-2014-4-0632
  38. Zhou, C. S., Motter, A. E., Kurths, J., 10.1103/physrevlett.96.034101, Phys. Rev. Lett. 96 (2006), 034101. DOI10.1103/physrevlett.96.034101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.