Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties
Hai-Yan Li; Yun-An Hu; Rui-Qi Wang
Kybernetika (2013)
- Volume: 49, Issue: 4, page 554-567
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLi, Hai-Yan, Hu, Yun-An, and Wang, Rui-Qi. "Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties." Kybernetika 49.4 (2013): 554-567. <http://eudml.org/doc/260744>.
@article{Li2013,
abstract = {This paper is concerned with the finite-time synchronization problem for a class of cross-strict feedback underactuated hyperchaotic systems. Using finite-time control and backstepping control approaches, a new robust adaptive synchronization scheme is proposed to make the synchronization errors of the systems with parameter uncertainties zero in a finite time. Appropriate adaptive laws are derived to deal with the unknown parameters of the systems. The proposed method can be applied to a variety of chaotic systems which can be described by the so-called cross-strict feedback systems. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.},
author = {Li, Hai-Yan, Hu, Yun-An, Wang, Rui-Qi},
journal = {Kybernetika},
keywords = {finite-time synchronization; cross-strict feedback hyperchaotic system; backstepping; adaptive control; finite-time synchronization; cross-strict feedback hyperchaotic system; backstepping; adaptive control},
language = {eng},
number = {4},
pages = {554-567},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties},
url = {http://eudml.org/doc/260744},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Li, Hai-Yan
AU - Hu, Yun-An
AU - Wang, Rui-Qi
TI - Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 4
SP - 554
EP - 567
AB - This paper is concerned with the finite-time synchronization problem for a class of cross-strict feedback underactuated hyperchaotic systems. Using finite-time control and backstepping control approaches, a new robust adaptive synchronization scheme is proposed to make the synchronization errors of the systems with parameter uncertainties zero in a finite time. Appropriate adaptive laws are derived to deal with the unknown parameters of the systems. The proposed method can be applied to a variety of chaotic systems which can be described by the so-called cross-strict feedback systems. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.
LA - eng
KW - finite-time synchronization; cross-strict feedback hyperchaotic system; backstepping; adaptive control; finite-time synchronization; cross-strict feedback hyperchaotic system; backstepping; adaptive control
UR - http://eudml.org/doc/260744
ER -
References
top- Aghababa, M. P., Khanmohammadi, S., Alizadeh, G., 10.1016/j.apm.2010.12.020, Appl. Math. Modelling 35 (2011), 3080-3091. Zbl1219.93023MR2776263DOI10.1016/j.apm.2010.12.020
- Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S., 10.1016/S0370-1573(02)00137-0, Phys. Rep. 366 (2002), 1-101. Zbl0995.37022MR1913567DOI10.1016/S0370-1573(02)00137-0
- Bowong, S., Kakmeni, F. M. M., 10.1016/j.chaos.2003.12.084, Chaos Solitons Fractals 21 (2004), 999-1011. Zbl1045.37011MR2042817DOI10.1016/j.chaos.2003.12.084
- Chen, F. X., Wang, W., Chen, L., Zhang, W. D., 10.1088/0031-8949/75/3/010, Phys. Scr. 75 (2007), 285-288. DOI10.1088/0031-8949/75/3/010
- Chen, G., Controlling Chaos and Bifurcations in Engineering Systems., CRC Press, Boca Raton 1999. Zbl0929.00012MR1756081
- Haeri, M., Emadzadeh, A. A., 10.1016/j.chaos.2005.09.037, Chaos Solitons Fractals 31 (2007), 119-129. Zbl1142.93394MR2263270DOI10.1016/j.chaos.2005.09.037
- Han, J. Q., Wang, W., Nonlinear tracking differentiator., System Sci. Math. 14 (1994), 177-183. Zbl0830.93038
- Harb, A., Jabbar, N. A., 10.1016/S0960-0779(03)00073-0, Chaos Solitons Fractals 18 (2003), 1055-1063. Zbl1074.93522DOI10.1016/S0960-0779(03)00073-0
- Huang, C. F., Cheng, K. H., Yan, J. J., 10.1016/j.cnsns.2008.09.017, Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 2784-2792. DOI10.1016/j.cnsns.2008.09.017
- Jia, Q., 10.1016/j.physleta.2006.10.044, Phys. Lett. A 362 (2007), 424-429. Zbl1197.34107DOI10.1016/j.physleta.2006.10.044
- Kittel, A., Parisi, J., Pyragas, K., 10.1016/0375-9601(95)00094-J, Phys. Lett. A 198 (1995), 433-436. DOI10.1016/0375-9601(95)00094-J
- Krstic, M., Kanellakopoulos, I., Kokotovic, P., Nonlinear and Adaptive Control Design., Wiley, New York 1995.
- Li, G. H., Zhou, S. P., Yang, K., 10.1016/j.physleta.2006.02.049, Phys. Lett. A 355 (2006), 326-330. DOI10.1016/j.physleta.2006.02.049
- Li, H. Y., Hu, Y. A., 10.1016/j.cnsns.2011.02.031, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 3904-3913. Zbl1219.93026MR2802696DOI10.1016/j.cnsns.2011.02.031
- Li, H. Y., Hu, Y. A., Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems., Chinese Phys. Lett. 28 (2011), 120508.
- Lu, X. Q., Lu, R. Q., Chen, S. H., Lü, J. H., 10.1109/TCSI.2012.2215786, IEEE Trans. Circuits Syst. I 60 (2013), 352-362. MR3017545DOI10.1109/TCSI.2012.2215786
- Ma, J., Zhang, A. H., Xia, Y. F., Zhang, L. P., 10.1016/j.amc.2009.10.020, Appl. Math. Comput. 215 (2010), 3318-3326. Zbl1181.93032MR2576820DOI10.1016/j.amc.2009.10.020
- Park, J. H., 10.1016/j.chaos.2005.05.001, Chaos Solitons Fractals 27 (2006), 1369-1375. Zbl1091.93028MR2164861DOI10.1016/j.chaos.2005.05.001
- Pecora, L. M., Carroll, T. L., 10.1103/PhysRevLett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/PhysRevLett.64.821
- Pourmahmood, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.cnsns.2010.09.038, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 2853-2868. Zbl1221.93131MR2772300DOI10.1016/j.cnsns.2010.09.038
- Roopaei, M., Sahraei, B. R., Lin, T. C., 10.1016/j.cnsns.2010.02.017, Comm. Nonlinear Sci. Numer. Simul. 15 (2010), 4158-4170. Zbl1222.93124MR2652685DOI10.1016/j.cnsns.2010.02.017
- Tan, X. H., Zhang, J. Y., Yang, Y. R., 10.1016/S0960-0779(02)00153-4, Chaos Solitons Fractals 16 (2003), 37-45. Zbl1035.34025MR1941155DOI10.1016/S0960-0779(02)00153-4
- Wang, C., Ge, S. S., 10.1142/S0218127401002985, Internat. J. Bifur. Chaos 11 (2001), 1743-1751. DOI10.1142/S0218127401002985
- Wang, F., Liu, C., 10.1016/j.physleta.2006.08.037, Phys. Lett. A 360 (2006), 274-278. Zbl1236.93131DOI10.1016/j.physleta.2006.08.037
- Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., 10.1016/j.cnsns.2008.08.013, Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 2728-2733. Zbl1221.37225MR2483882DOI10.1016/j.cnsns.2008.08.013
- Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., Finite-time synchronization of uncertain unified chaotic systems based on CLF., Nonlinear Anal.: Real World Appl. 10 (2009), 2842-2849. Zbl1183.34072MR2523247
- Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., 10.1016/j.cnsns.2008.04.015, Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 2239-2247. DOI10.1016/j.cnsns.2008.04.015
- Wang, J., Gao, J. F., Ma, X. K., 10.1016/j.physleta.2007.05.038, Phys. Lett. A 369 (2007), 452-457. DOI10.1016/j.physleta.2007.05.038
- Wu, T., Chen, M. S., 10.1016/S0167-2789(02)00360-3, Physica D 164 (2002), 53-58. Zbl1008.37017MR1910015DOI10.1016/S0167-2789(02)00360-3
- Wu, X. Y., Zhang, H. M., 10.1016/j.chaos.2007.06.100, Chaos Solitons Fractals 39 (2009), 2268-2273. Zbl1197.37046DOI10.1016/j.chaos.2007.06.100
- Xiang, W., Huangpu, Y. G., 10.1016/j.cnsns.2009.12.012, Comm. Nonlinear Sci. Numer. Simul. 15 (2010), 3241-3247. Zbl1222.93045MR2646151DOI10.1016/j.cnsns.2009.12.012
- Yan, J. J., Hung, M. L., Chiang, T. Y., Yang, Y. S., 10.1016/j.physleta.2006.03.047, Phys. Lett. A 356 (2006), 220-225. Zbl1160.37352DOI10.1016/j.physleta.2006.03.047
- Yan, Z., 10.1016/j.amc.2004.10.016, Appl. Math. Comput. 168 (2005), 1239-1250. Zbl1160.93384MR2171776DOI10.1016/j.amc.2004.10.016
- Yau, H. T., 10.1016/j.ymssp.2007.08.007, Mech. Syst. Signal Process 22 (2008), 408-418. DOI10.1016/j.ymssp.2007.08.007
- Yu, S. M., Lü, J. H., Yu, X. H., Chen, G. R., 10.1109/TCSI.2011.2180429, IEEE Trans. Circuits Syst. I 59 (2012), 1015-1028. MR2924533DOI10.1109/TCSI.2011.2180429
- Yu, W. G., 10.1016/j.physleta.2010.05.040, Phys. Lett. A 374 (2010), 3021-3024. Zbl1237.34093MR2660601DOI10.1016/j.physleta.2010.05.040
- Yu, Y. G., Zhang, S. C., 10.1016/j.chaos.2003.12.067, Chaos Solitons Fractals 21 (2004), 643-649. DOI10.1016/j.chaos.2003.12.067
- Zhang, H., Ma, X. K., Li, M., Zou, J. L., 10.1016/j.chaos.2004.12.032, Chaos Solitons Fractals 26 (2005), 353-361. Zbl1153.93381DOI10.1016/j.chaos.2004.12.032
- Zhou, X. B., Wu, Y., Li, Y., Xue, H. Q., 10.1016/j.chaos.2007.07.017, Chaos Solitons Fractals 39 (2009), 2477-2483. DOI10.1016/j.chaos.2007.07.017
- Zhu, C. X., 10.1016/j.amc.2009.05.026, Appl. Math. Comput. 215 (2009), 557-561. Zbl1182.37028MR2561513DOI10.1016/j.amc.2009.05.026
Citations in EuDML Documents
top- Zhi-cai Ma, Yong-zheng Sun, Hong-jun Shi, Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation
- Jie Wu, Zhi-cai Ma, Yong-zheng Sun, Feng Liu, Finite-time synchronization of chaotic systems with noise perturbation
- Ke Ding, Qing-Long Han, Synchronization of two coupled Hindmarsh-Rose neurons
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.