Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties

Hai-Yan Li; Yun-An Hu; Rui-Qi Wang

Kybernetika (2013)

  • Volume: 49, Issue: 4, page 554-567
  • ISSN: 0023-5954

Abstract

top
This paper is concerned with the finite-time synchronization problem for a class of cross-strict feedback underactuated hyperchaotic systems. Using finite-time control and backstepping control approaches, a new robust adaptive synchronization scheme is proposed to make the synchronization errors of the systems with parameter uncertainties zero in a finite time. Appropriate adaptive laws are derived to deal with the unknown parameters of the systems. The proposed method can be applied to a variety of chaotic systems which can be described by the so-called cross-strict feedback systems. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.

How to cite

top

Li, Hai-Yan, Hu, Yun-An, and Wang, Rui-Qi. "Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties." Kybernetika 49.4 (2013): 554-567. <http://eudml.org/doc/260744>.

@article{Li2013,
abstract = {This paper is concerned with the finite-time synchronization problem for a class of cross-strict feedback underactuated hyperchaotic systems. Using finite-time control and backstepping control approaches, a new robust adaptive synchronization scheme is proposed to make the synchronization errors of the systems with parameter uncertainties zero in a finite time. Appropriate adaptive laws are derived to deal with the unknown parameters of the systems. The proposed method can be applied to a variety of chaotic systems which can be described by the so-called cross-strict feedback systems. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.},
author = {Li, Hai-Yan, Hu, Yun-An, Wang, Rui-Qi},
journal = {Kybernetika},
keywords = {finite-time synchronization; cross-strict feedback hyperchaotic system; backstepping; adaptive control; finite-time synchronization; cross-strict feedback hyperchaotic system; backstepping; adaptive control},
language = {eng},
number = {4},
pages = {554-567},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties},
url = {http://eudml.org/doc/260744},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Li, Hai-Yan
AU - Hu, Yun-An
AU - Wang, Rui-Qi
TI - Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 4
SP - 554
EP - 567
AB - This paper is concerned with the finite-time synchronization problem for a class of cross-strict feedback underactuated hyperchaotic systems. Using finite-time control and backstepping control approaches, a new robust adaptive synchronization scheme is proposed to make the synchronization errors of the systems with parameter uncertainties zero in a finite time. Appropriate adaptive laws are derived to deal with the unknown parameters of the systems. The proposed method can be applied to a variety of chaotic systems which can be described by the so-called cross-strict feedback systems. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.
LA - eng
KW - finite-time synchronization; cross-strict feedback hyperchaotic system; backstepping; adaptive control; finite-time synchronization; cross-strict feedback hyperchaotic system; backstepping; adaptive control
UR - http://eudml.org/doc/260744
ER -

References

top
  1. Aghababa, M. P., Khanmohammadi, S., Alizadeh, G., 10.1016/j.apm.2010.12.020, Appl. Math. Modelling 35 (2011), 3080-3091. Zbl1219.93023MR2776263DOI10.1016/j.apm.2010.12.020
  2. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S., 10.1016/S0370-1573(02)00137-0, Phys. Rep. 366 (2002), 1-101. Zbl0995.37022MR1913567DOI10.1016/S0370-1573(02)00137-0
  3. Bowong, S., Kakmeni, F. M. M., 10.1016/j.chaos.2003.12.084, Chaos Solitons Fractals 21 (2004), 999-1011. Zbl1045.37011MR2042817DOI10.1016/j.chaos.2003.12.084
  4. Chen, F. X., Wang, W., Chen, L., Zhang, W. D., 10.1088/0031-8949/75/3/010, Phys. Scr. 75 (2007), 285-288. DOI10.1088/0031-8949/75/3/010
  5. Chen, G., Controlling Chaos and Bifurcations in Engineering Systems., CRC Press, Boca Raton 1999. Zbl0929.00012MR1756081
  6. Haeri, M., Emadzadeh, A. A., 10.1016/j.chaos.2005.09.037, Chaos Solitons Fractals 31 (2007), 119-129. Zbl1142.93394MR2263270DOI10.1016/j.chaos.2005.09.037
  7. Han, J. Q., Wang, W., Nonlinear tracking differentiator., System Sci. Math. 14 (1994), 177-183. Zbl0830.93038
  8. Harb, A., Jabbar, N. A., 10.1016/S0960-0779(03)00073-0, Chaos Solitons Fractals 18 (2003), 1055-1063. Zbl1074.93522DOI10.1016/S0960-0779(03)00073-0
  9. Huang, C. F., Cheng, K. H., Yan, J. J., 10.1016/j.cnsns.2008.09.017, Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 2784-2792. DOI10.1016/j.cnsns.2008.09.017
  10. Jia, Q., 10.1016/j.physleta.2006.10.044, Phys. Lett. A 362 (2007), 424-429. Zbl1197.34107DOI10.1016/j.physleta.2006.10.044
  11. Kittel, A., Parisi, J., Pyragas, K., 10.1016/0375-9601(95)00094-J, Phys. Lett. A 198 (1995), 433-436. DOI10.1016/0375-9601(95)00094-J
  12. Krstic, M., Kanellakopoulos, I., Kokotovic, P., Nonlinear and Adaptive Control Design., Wiley, New York 1995. 
  13. Li, G. H., Zhou, S. P., Yang, K., 10.1016/j.physleta.2006.02.049, Phys. Lett. A 355 (2006), 326-330. DOI10.1016/j.physleta.2006.02.049
  14. Li, H. Y., Hu, Y. A., 10.1016/j.cnsns.2011.02.031, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 3904-3913. Zbl1219.93026MR2802696DOI10.1016/j.cnsns.2011.02.031
  15. Li, H. Y., Hu, Y. A., Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems., Chinese Phys. Lett. 28 (2011), 120508. 
  16. Lu, X. Q., Lu, R. Q., Chen, S. H., Lü, J. H., 10.1109/TCSI.2012.2215786, IEEE Trans. Circuits Syst. I 60 (2013), 352-362. MR3017545DOI10.1109/TCSI.2012.2215786
  17. Ma, J., Zhang, A. H., Xia, Y. F., Zhang, L. P., 10.1016/j.amc.2009.10.020, Appl. Math. Comput. 215 (2010), 3318-3326. Zbl1181.93032MR2576820DOI10.1016/j.amc.2009.10.020
  18. Park, J. H., 10.1016/j.chaos.2005.05.001, Chaos Solitons Fractals 27 (2006), 1369-1375. Zbl1091.93028MR2164861DOI10.1016/j.chaos.2005.05.001
  19. Pecora, L. M., Carroll, T. L., 10.1103/PhysRevLett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/PhysRevLett.64.821
  20. Pourmahmood, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.cnsns.2010.09.038, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 2853-2868. Zbl1221.93131MR2772300DOI10.1016/j.cnsns.2010.09.038
  21. Roopaei, M., Sahraei, B. R., Lin, T. C., 10.1016/j.cnsns.2010.02.017, Comm. Nonlinear Sci. Numer. Simul. 15 (2010), 4158-4170. Zbl1222.93124MR2652685DOI10.1016/j.cnsns.2010.02.017
  22. Tan, X. H., Zhang, J. Y., Yang, Y. R., 10.1016/S0960-0779(02)00153-4, Chaos Solitons Fractals 16 (2003), 37-45. Zbl1035.34025MR1941155DOI10.1016/S0960-0779(02)00153-4
  23. Wang, C., Ge, S. S., 10.1142/S0218127401002985, Internat. J. Bifur. Chaos 11 (2001), 1743-1751. DOI10.1142/S0218127401002985
  24. Wang, F., Liu, C., 10.1016/j.physleta.2006.08.037, Phys. Lett. A 360 (2006), 274-278. Zbl1236.93131DOI10.1016/j.physleta.2006.08.037
  25. Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., 10.1016/j.cnsns.2008.08.013, Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 2728-2733. Zbl1221.37225MR2483882DOI10.1016/j.cnsns.2008.08.013
  26. Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., Finite-time synchronization of uncertain unified chaotic systems based on CLF., Nonlinear Anal.: Real World Appl. 10 (2009), 2842-2849. Zbl1183.34072MR2523247
  27. Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., 10.1016/j.cnsns.2008.04.015, Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 2239-2247. DOI10.1016/j.cnsns.2008.04.015
  28. Wang, J., Gao, J. F., Ma, X. K., 10.1016/j.physleta.2007.05.038, Phys. Lett. A 369 (2007), 452-457. DOI10.1016/j.physleta.2007.05.038
  29. Wu, T., Chen, M. S., 10.1016/S0167-2789(02)00360-3, Physica D 164 (2002), 53-58. Zbl1008.37017MR1910015DOI10.1016/S0167-2789(02)00360-3
  30. Wu, X. Y., Zhang, H. M., 10.1016/j.chaos.2007.06.100, Chaos Solitons Fractals 39 (2009), 2268-2273. Zbl1197.37046DOI10.1016/j.chaos.2007.06.100
  31. Xiang, W., Huangpu, Y. G., 10.1016/j.cnsns.2009.12.012, Comm. Nonlinear Sci. Numer. Simul. 15 (2010), 3241-3247. Zbl1222.93045MR2646151DOI10.1016/j.cnsns.2009.12.012
  32. Yan, J. J., Hung, M. L., Chiang, T. Y., Yang, Y. S., 10.1016/j.physleta.2006.03.047, Phys. Lett. A 356 (2006), 220-225. Zbl1160.37352DOI10.1016/j.physleta.2006.03.047
  33. Yan, Z., 10.1016/j.amc.2004.10.016, Appl. Math. Comput. 168 (2005), 1239-1250. Zbl1160.93384MR2171776DOI10.1016/j.amc.2004.10.016
  34. Yau, H. T., 10.1016/j.ymssp.2007.08.007, Mech. Syst. Signal Process 22 (2008), 408-418. DOI10.1016/j.ymssp.2007.08.007
  35. Yu, S. M., Lü, J. H., Yu, X. H., Chen, G. R., 10.1109/TCSI.2011.2180429, IEEE Trans. Circuits Syst. I 59 (2012), 1015-1028. MR2924533DOI10.1109/TCSI.2011.2180429
  36. Yu, W. G., 10.1016/j.physleta.2010.05.040, Phys. Lett. A 374 (2010), 3021-3024. Zbl1237.34093MR2660601DOI10.1016/j.physleta.2010.05.040
  37. Yu, Y. G., Zhang, S. C., 10.1016/j.chaos.2003.12.067, Chaos Solitons Fractals 21 (2004), 643-649. DOI10.1016/j.chaos.2003.12.067
  38. Zhang, H., Ma, X. K., Li, M., Zou, J. L., 10.1016/j.chaos.2004.12.032, Chaos Solitons Fractals 26 (2005), 353-361. Zbl1153.93381DOI10.1016/j.chaos.2004.12.032
  39. Zhou, X. B., Wu, Y., Li, Y., Xue, H. Q., 10.1016/j.chaos.2007.07.017, Chaos Solitons Fractals 39 (2009), 2477-2483. DOI10.1016/j.chaos.2007.07.017
  40. Zhu, C. X., 10.1016/j.amc.2009.05.026, Appl. Math. Comput. 215 (2009), 557-561. Zbl1182.37028MR2561513DOI10.1016/j.amc.2009.05.026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.