Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification
Xiaobing Zhou; Murong Jiang; Yaqun Huang
Kybernetika (2014)
- Volume: 50, Issue: 4, page 632-642
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZhou, Xiaobing, Jiang, Murong, and Huang, Yaqun. "Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification." Kybernetika 50.4 (2014): 632-642. <http://eudml.org/doc/262034>.
@article{Zhou2014,
abstract = {This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation is presented to demonstrate the validity and feasibility of the proposed controllers and update laws.},
author = {Zhou, Xiaobing, Jiang, Murong, Huang, Yaqun},
journal = {Kybernetika},
keywords = {modified function projective synchronization; switched state; hyperchaotic system; complex variable; adaptive control; modified function projective synchronization; switched state; hyperchaotic system; complex variable; adaptive control},
language = {eng},
number = {4},
pages = {632-642},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification},
url = {http://eudml.org/doc/262034},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Zhou, Xiaobing
AU - Jiang, Murong
AU - Huang, Yaqun
TI - Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 4
SP - 632
EP - 642
AB - This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation is presented to demonstrate the validity and feasibility of the proposed controllers and update laws.
LA - eng
KW - modified function projective synchronization; switched state; hyperchaotic system; complex variable; adaptive control; modified function projective synchronization; switched state; hyperchaotic system; complex variable; adaptive control
UR - http://eudml.org/doc/262034
ER -
References
top- Bhowmick, S. K., Pal, P., Roy, P. K., Dana, S. K., 10.1063/1.4731263, Chaos 22 (2012), 023151. DOI10.1063/1.4731263
- Chen, Y., Li, X., 10.1142/S0129183107010607, Int. J. Mod. Phys. C 18 (2007), 883-888. DOI10.1142/S0129183107010607
- Chen, Y., Lü, J., Yu, X., Lin, Z., 10.1137/110850116, SIAM J. Control Optim. 51 (2013), 3274-3301. Zbl1275.93005MR3090151DOI10.1137/110850116
- Chen, Y., Lü, J., Lin, Z., 10.1016/j.automatica.2013.02.021, Automatica 49 (2013), 1768-1775. MR3049226DOI10.1016/j.automatica.2013.02.021
- Chen, Y., Lü, J., Yu, X., Hill, D., 10.1109/MCAS.2013.2271443, IEEE Circuits Syst. Magazine 13 (2013), 21-34. DOI10.1109/MCAS.2013.2271443
- Du, H. Y., Zeng, Q. S., Wang, C. H., 10.1016/j.chaos.2009.03.120, Chaos Solitons Fractals 42 (2009), 2399-2404. Zbl1198.93011DOI10.1016/j.chaos.2009.03.120
- Elabbasy, E. M., El-Dessoky, M. M., Adaptive feedback control for the projective synchronization of the Lü dynamical system and its application to secure communication., Chin. J. Phys. 48 (2010), 863-872.
- Feng, C. F., Zhang, Y., Sun, J. T., Qi, W., Wang, Y. H., 10.1016/j.chaos.2007.01.037, Chaos, Solitons Fractals 38 (2008), 743-747. Zbl1146.37318DOI10.1016/j.chaos.2007.01.037
- Fowler, A. C., Gibbon, J. D., McGuinness, M. J., 10.1016/0167-2789(82)90057-4, Physica D 4 (1982), 139-163. Zbl1194.37039MR0653770DOI10.1016/0167-2789(82)90057-4
- Grassi, G., 10.1088/1674-1056/21/5/050505, Chin. Phys. B 21 (2012), 050505. DOI10.1088/1674-1056/21/5/050505
- Lambert, J. D., Numerical Methods for Ordinary Differential Systems: The Initial Value Problem., Wiley, New York 1991. Zbl0745.65049MR1127425
- Li, G. H., 10.1016/j.chaos.2005.12.009, Chaos Solitons Fractals 32 (2007), 1786-1790. Zbl1134.37331MR2299092DOI10.1016/j.chaos.2005.12.009
- Liu, P., Liu, S. T., Li, X., 10.1088/0031-8949/85/03/035005, Phys. Scr. 85 (2012), 035005. DOI10.1088/0031-8949/85/03/035005
- Lynnyk, V., Čelikovský, S., On the anti-synchronization detection for the generalized lorenz system and its applications to secure encryption., Kybernetika 46 (2010) 1-18. Zbl1190.93038MR2666891
- Ma, J., Li, F., Huang, L., Jin, W. Y., 10.1016/j.cnsns.2010.12.030, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 3770-3785. Zbl1222.65136DOI10.1016/j.cnsns.2010.12.030
- Ma, M. H., Zhang, H., Cai, J. P., al., et, Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch., Kybernetika 49 (2013), 539-553. MR3117913
- Mahmoud, G. M., Mahmoud, E. E., Complete synchronization of chaotic complex nonlinear systems with uncertain parameters., Nonlinear Dyn. 62 (2010), 875-882. Zbl1215.93114
- Mahmoud, G. M., Farghaly, A. A. M., 10.1016/j.chaos.2003.12.039, Chaos Solitons Fractals 21 (2004), 915-924. Zbl1046.70014MR2042809DOI10.1016/j.chaos.2003.12.039
- Mahmoud, G.M., Bountis, T., Mahmoud, E. E., 10.1142/S0218127407019962, Int. J. Bifur. Chaos 17 (2007), 4295-4308. Zbl1146.93372MR2394229DOI10.1142/S0218127407019962
- Mahmoud, G. M., Mahmoud, E. E., Ahmed, M. E., A hyperchaotic complex Chen system and its dynamics., Int. J. Appl. Math. Stat. 12 (2007), 90-100. Zbl1136.37327MR2374504
- Mahmoud, G. M., Ahmed, M. E., Mahmoud, E. E., 10.1142/S0129183108013151, Int. J. Mod. Phys. C 19 (2008), 1477-1494. Zbl1170.37311DOI10.1142/S0129183108013151
- Mahmoud, G. M., Mahmoud, E. E., Ahmed, M. E., On the hyperchaotic complex Lü system., Nonlinear Dyn. 58 (2009), 725-738. Zbl1183.70053MR2563618
- Mahmoud, G. M., Al-Kashif, M. A., Farghaly, A. A., 10.1088/1751-8113/41/5/055104, J. Phys. A: Math. Theor. 41 (2008), 055104. Zbl1131.37036MR2433424DOI10.1088/1751-8113/41/5/055104
- Mahmoud, G. M., Ahmed, M. E., Sabor, N., 10.1142/S0218127411029525, Int. J. Bifur. Chaos 21 (2011), 1913-1926. Zbl1248.34053MR2835466DOI10.1142/S0218127411029525
- Mahmoud, G. M., Ahmed, M. E., 10.1177/1077546311405370, J. Vib. Control 18 (2012), 841-849. MR2954367DOI10.1177/1077546311405370
- Mainieri, R., Rehacek, J., 10.1103/PhysRevLett.82.3042, Phys. Rev. Lett. 82 (1999), 3042-3045. DOI10.1103/PhysRevLett.82.3042
- Pecora, L. M., Carroll, T. L., 10.1103/PhysRevLett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/PhysRevLett.64.821
- Shen, C., Yu, S., Lu, J., Chen, G., 10.1109/TCSI.2013.2283994, IEEE Trans. Circuits Syst. I 61 (2014), 854-864. DOI10.1109/TCSI.2013.2283994
- Sudheer, K. S., Sabir, M., 10.1016/j.cnsns.2010.01.014, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 4058-4064. DOI10.1016/j.cnsns.2010.01.014
- Wang, J. W., Chen, A. M., 10.1016/j.cam.2009.09.026, J. Comp. Appl. Math. 233 (2010), 1897-1904. Zbl1194.34095MR2564025DOI10.1016/j.cam.2009.09.026
- Wu, X. J., Wang, H., Lu, H. T., Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication., Nonlinear Anal.: Real World Appl. 13 (2012), 1441-1450. Zbl1239.94003MR2863970
- Yu, F., Wang, C. H., Wan, Q. Z., Hu, Y., 10.1007/s12043-012-0481-4, Pramana 80 (2013), 223-235. DOI10.1007/s12043-012-0481-4
- Zhou, P., Zhu, W., Function projective synchronization for fractional-order chaotic systems., Nonlinear Anal.: Real World Appl. 12 (2011), 811-816. Zbl1209.34065MR2736173
Citations in EuDML Documents
top- Zhi-cai Ma, Yong-zheng Sun, Hong-jun Shi, Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation
- Zhi-cai Ma, Jie Wu, Yong-zheng Sun, Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.