Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification

Xiaobing Zhou; Murong Jiang; Yaqun Huang

Kybernetika (2014)

  • Volume: 50, Issue: 4, page 632-642
  • ISSN: 0023-5954

Abstract

top
This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation is presented to demonstrate the validity and feasibility of the proposed controllers and update laws.

How to cite

top

Zhou, Xiaobing, Jiang, Murong, and Huang, Yaqun. "Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification." Kybernetika 50.4 (2014): 632-642. <http://eudml.org/doc/262034>.

@article{Zhou2014,
abstract = {This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation is presented to demonstrate the validity and feasibility of the proposed controllers and update laws.},
author = {Zhou, Xiaobing, Jiang, Murong, Huang, Yaqun},
journal = {Kybernetika},
keywords = {modified function projective synchronization; switched state; hyperchaotic system; complex variable; adaptive control; modified function projective synchronization; switched state; hyperchaotic system; complex variable; adaptive control},
language = {eng},
number = {4},
pages = {632-642},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification},
url = {http://eudml.org/doc/262034},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Zhou, Xiaobing
AU - Jiang, Murong
AU - Huang, Yaqun
TI - Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 4
SP - 632
EP - 642
AB - This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation is presented to demonstrate the validity and feasibility of the proposed controllers and update laws.
LA - eng
KW - modified function projective synchronization; switched state; hyperchaotic system; complex variable; adaptive control; modified function projective synchronization; switched state; hyperchaotic system; complex variable; adaptive control
UR - http://eudml.org/doc/262034
ER -

References

top
  1. Bhowmick, S. K., Pal, P., Roy, P. K., Dana, S. K., 10.1063/1.4731263, Chaos 22 (2012), 023151. DOI10.1063/1.4731263
  2. Chen, Y., Li, X., 10.1142/S0129183107010607, Int. J. Mod. Phys. C 18 (2007), 883-888. DOI10.1142/S0129183107010607
  3. Chen, Y., Lü, J., Yu, X., Lin, Z., 10.1137/110850116, SIAM J. Control Optim. 51 (2013), 3274-3301. Zbl1275.93005MR3090151DOI10.1137/110850116
  4. Chen, Y., Lü, J., Lin, Z., 10.1016/j.automatica.2013.02.021, Automatica 49 (2013), 1768-1775. MR3049226DOI10.1016/j.automatica.2013.02.021
  5. Chen, Y., Lü, J., Yu, X., Hill, D., 10.1109/MCAS.2013.2271443, IEEE Circuits Syst. Magazine 13 (2013), 21-34. DOI10.1109/MCAS.2013.2271443
  6. Du, H. Y., Zeng, Q. S., Wang, C. H., 10.1016/j.chaos.2009.03.120, Chaos Solitons Fractals 42 (2009), 2399-2404. Zbl1198.93011DOI10.1016/j.chaos.2009.03.120
  7. Elabbasy, E. M., El-Dessoky, M. M., Adaptive feedback control for the projective synchronization of the Lü dynamical system and its application to secure communication., Chin. J. Phys. 48 (2010), 863-872. 
  8. Feng, C. F., Zhang, Y., Sun, J. T., Qi, W., Wang, Y. H., 10.1016/j.chaos.2007.01.037, Chaos, Solitons Fractals 38 (2008), 743-747. Zbl1146.37318DOI10.1016/j.chaos.2007.01.037
  9. Fowler, A. C., Gibbon, J. D., McGuinness, M. J., 10.1016/0167-2789(82)90057-4, Physica D 4 (1982), 139-163. Zbl1194.37039MR0653770DOI10.1016/0167-2789(82)90057-4
  10. Grassi, G., 10.1088/1674-1056/21/5/050505, Chin. Phys. B 21 (2012), 050505. DOI10.1088/1674-1056/21/5/050505
  11. Lambert, J. D., Numerical Methods for Ordinary Differential Systems: The Initial Value Problem., Wiley, New York 1991. Zbl0745.65049MR1127425
  12. Li, G. H., 10.1016/j.chaos.2005.12.009, Chaos Solitons Fractals 32 (2007), 1786-1790. Zbl1134.37331MR2299092DOI10.1016/j.chaos.2005.12.009
  13. Liu, P., Liu, S. T., Li, X., 10.1088/0031-8949/85/03/035005, Phys. Scr. 85 (2012), 035005. DOI10.1088/0031-8949/85/03/035005
  14. Lynnyk, V., Čelikovský, S., On the anti-synchronization detection for the generalized lorenz system and its applications to secure encryption., Kybernetika 46 (2010) 1-18. Zbl1190.93038MR2666891
  15. Ma, J., Li, F., Huang, L., Jin, W. Y., 10.1016/j.cnsns.2010.12.030, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 3770-3785. Zbl1222.65136DOI10.1016/j.cnsns.2010.12.030
  16. Ma, M. H., Zhang, H., Cai, J. P., al., et, Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch., Kybernetika 49 (2013), 539-553. MR3117913
  17. Mahmoud, G. M., Mahmoud, E. E., Complete synchronization of chaotic complex nonlinear systems with uncertain parameters., Nonlinear Dyn. 62 (2010), 875-882. Zbl1215.93114
  18. Mahmoud, G. M., Farghaly, A. A. M., 10.1016/j.chaos.2003.12.039, Chaos Solitons Fractals 21 (2004), 915-924. Zbl1046.70014MR2042809DOI10.1016/j.chaos.2003.12.039
  19. Mahmoud, G.M., Bountis, T., Mahmoud, E. E., 10.1142/S0218127407019962, Int. J. Bifur. Chaos 17 (2007), 4295-4308. Zbl1146.93372MR2394229DOI10.1142/S0218127407019962
  20. Mahmoud, G. M., Mahmoud, E. E., Ahmed, M. E., A hyperchaotic complex Chen system and its dynamics., Int. J. Appl. Math. Stat. 12 (2007), 90-100. Zbl1136.37327MR2374504
  21. Mahmoud, G. M., Ahmed, M. E., Mahmoud, E. E., 10.1142/S0129183108013151, Int. J. Mod. Phys. C 19 (2008), 1477-1494. Zbl1170.37311DOI10.1142/S0129183108013151
  22. Mahmoud, G. M., Mahmoud, E. E., Ahmed, M. E., On the hyperchaotic complex Lü system., Nonlinear Dyn. 58 (2009), 725-738. Zbl1183.70053MR2563618
  23. Mahmoud, G. M., Al-Kashif, M. A., Farghaly, A. A., 10.1088/1751-8113/41/5/055104, J. Phys. A: Math. Theor. 41 (2008), 055104. Zbl1131.37036MR2433424DOI10.1088/1751-8113/41/5/055104
  24. Mahmoud, G. M., Ahmed, M. E., Sabor, N., 10.1142/S0218127411029525, Int. J. Bifur. Chaos 21 (2011), 1913-1926. Zbl1248.34053MR2835466DOI10.1142/S0218127411029525
  25. Mahmoud, G. M., Ahmed, M. E., 10.1177/1077546311405370, J. Vib. Control 18 (2012), 841-849. MR2954367DOI10.1177/1077546311405370
  26. Mainieri, R., Rehacek, J., 10.1103/PhysRevLett.82.3042, Phys. Rev. Lett. 82 (1999), 3042-3045. DOI10.1103/PhysRevLett.82.3042
  27. Pecora, L. M., Carroll, T. L., 10.1103/PhysRevLett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/PhysRevLett.64.821
  28. Shen, C., Yu, S., Lu, J., Chen, G., 10.1109/TCSI.2013.2283994, IEEE Trans. Circuits Syst. I 61 (2014), 854-864. DOI10.1109/TCSI.2013.2283994
  29. Sudheer, K. S., Sabir, M., 10.1016/j.cnsns.2010.01.014, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 4058-4064. DOI10.1016/j.cnsns.2010.01.014
  30. Wang, J. W., Chen, A. M., 10.1016/j.cam.2009.09.026, J. Comp. Appl. Math. 233 (2010), 1897-1904. Zbl1194.34095MR2564025DOI10.1016/j.cam.2009.09.026
  31. Wu, X. J., Wang, H., Lu, H. T., Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication., Nonlinear Anal.: Real World Appl. 13 (2012), 1441-1450. Zbl1239.94003MR2863970
  32. Yu, F., Wang, C. H., Wan, Q. Z., Hu, Y., 10.1007/s12043-012-0481-4, Pramana 80 (2013), 223-235. DOI10.1007/s12043-012-0481-4
  33. Zhou, P., Zhu, W., Function projective synchronization for fractional-order chaotic systems., Nonlinear Anal.: Real World Appl. 12 (2011), 811-816. Zbl1209.34065MR2736173

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.