Projective invariant metrics and open convex regular cones. I

Fabio Podestà

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1987)

  • Volume: 81, Issue: 2, page 125-137
  • ISSN: 1120-6330

Abstract

top
In this work we give a characterization of the projective invariant pseudometric P , introduced by H. Wu, for a particular class of real 𝐂 -manifolds; in view of this result, we study the group of projective transformations for the same class of manifolds and we determine the integrated pseudodistance p of P in open convex regular cones of n , endowed with the characteristic metric.

How to cite

top

Podestà, Fabio. "Projective invariant metrics and open convex regular cones. I." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 81.2 (1987): 125-137. <http://eudml.org/doc/287186>.

@article{Podestà1987,
abstract = {In this work we give a characterization of the projective invariant pseudometric $P$, introduced by H. Wu, for a particular class of real $\mathbf\{C\}^\{\infty\}$-manifolds; in view of this result, we study the group of projective transformations for the same class of manifolds and we determine the integrated pseudodistance $p$ of $P$ in open convex regular cones of $\mathbb\{R\}^\{n\}$, endowed with the characteristic metric.},
author = {Podestà, Fabio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Projective connections; Regular cones; Projective transformations; symmetric complete connection; Ricci tensor; pseudometric; self-dual cones; Koecher norm},
language = {eng},
month = {6},
number = {2},
pages = {125-137},
publisher = {Accademia Nazionale dei Lincei},
title = {Projective invariant metrics and open convex regular cones. I},
url = {http://eudml.org/doc/287186},
volume = {81},
year = {1987},
}

TY - JOUR
AU - Podestà, Fabio
TI - Projective invariant metrics and open convex regular cones. I
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1987/6//
PB - Accademia Nazionale dei Lincei
VL - 81
IS - 2
SP - 125
EP - 137
AB - In this work we give a characterization of the projective invariant pseudometric $P$, introduced by H. Wu, for a particular class of real $\mathbf{C}^{\infty}$-manifolds; in view of this result, we study the group of projective transformations for the same class of manifolds and we determine the integrated pseudodistance $p$ of $P$ in open convex regular cones of $\mathbb{R}^{n}$, endowed with the characteristic metric.
LA - eng
KW - Projective connections; Regular cones; Projective transformations; symmetric complete connection; Ricci tensor; pseudometric; self-dual cones; Koecher norm
UR - http://eudml.org/doc/287186
ER -

References

top
  1. BORTOLOTTI, E. (1941) - Spazi a Connessione Proiettiva. Ed. Cremonese, Roma Zbl67.0676.01
  2. EISENHART, L.P. (1927) - Non-Riemannian Geometry, «Amer. Math. Soc. Colloquium», Publ., Vol. VIII. MR1466961JFM52.0721.02
  3. FRANZONI, T. and VESENTINI, E. (1980) - Holomorphic maps and invariant distances. North Holland, Amsterdam. Zbl0447.46040MR563329
  4. GENTILI, G. (1981) - Invariant Riemannian Geometry on Convex Cones. Tesi di Perfezionamento - Classe di Scienze - Scuola Normale Superiore, Pisa. 
  5. KOBAYASHI, S. (1984) - Projective Structures of hyperbolic type, Banach Centre Publications, vol. 12, Warsaw, 127-152. Zbl0558.53019MR961077
  6. KOBAYASHI, S. and SASAKI, (1979) - Projective Invariant Metrics for Einstein Space «Nagoya Math. Journal», 73, 171-174. Zbl0413.53030MR524014
  7. KOBAYASHI, S. and NOMIZU, K. (1963) - Foundations of Differential Geometry, vol. I, II, Interscience Publishers. Zbl0119.37502MR152974
  8. NAGANO, T. (1959) - The Projective Transformations on a Space with parallel Ricci Tensor, «Kodai Math. Sem. Reports», 11, 131-138. Zbl0097.37503MR109330
  9. RINOW, W. (1961) - Die innere Geometrie der metrischen Räurne, Springer Verlag, Berlin. Zbl0096.16302MR123969
  10. ROTHAUS, O. (1960) - Domains of Positivity. «Abh. Math. Sem.», 189, 189-225. Zbl0096.27903MR121810
  11. VINBERG, E.B. (1963) - Theory of Convex Homogeneous Cones, «Trans. Moscow Math. Soc.», 12, 340. Zbl0138.43301MR158414
  12. WU, H. (1981) - Some Theorems on projectively Hyperbolicity, «J. Math. Soc. Japan», 33, 79-104. Zbl0458.53016MR597482DOI10.2969/jmsj/03310079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.