4-planar mappings of almost quaternionic and almost antiquaternionic Spaces.
We discuss almost complex projective geometry and the relations to a distinguished class of curves. We present the geometry from the viewpoint of the theory of parabolic geometries and we shall specify the classical generalizations of the concept of the planarity of curves to this case. In particular, we show that the natural class of J-planar curves coincides with the class of all geodesics of the so called Weyl connections and preserving of this class turns out to be the necessary and sufficient...
We use the general theory developed in our article [Čap A., Melnick K., Essential Killing fields of parabolic geometries, Indiana Univ. Math. J. (in press)], in the setting of parabolic geometries to reprove known results on special infinitesimal automorphisms of projective and conformal geometries.
In this paper we study fundamental equations of holomorphically projective mappings of -Kähler spaces (i.e. classical, pseudo- and hyperbolic Kähler spaces) with respect to the smoothness class of metrics. We show that holomorphically projective mappings preserve the smoothness class of metrics.