Projective invariant metrics and open convex regular cones. II

Fabio Podestà

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1987)

  • Volume: 81, Issue: 2, page 139-147
  • ISSN: 1120-6330

Abstract

top
The aim of this work, which continues Part I with the same title, is to study a class of projective transformations of open, convex, regular cones in n and to prove a structure theorem for affine transformations of a restricted class of cones; we conclude with a version of the Schwarz Lemma holding for affine transformations.

How to cite

top

Podestà, Fabio. "Projective invariant metrics and open convex regular cones. II." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 81.2 (1987): 139-147. <http://eudml.org/doc/287321>.

@article{Podestà1987,
abstract = {The aim of this work, which continues Part I with the same title, is to study a class of projective transformations of open, convex, regular cones in $\mathbb\{R\}^\{n\}$ and to prove a structure theorem for affine transformations of a restricted class of cones; we conclude with a version of the Schwarz Lemma holding for affine transformations.},
author = {Podestà, Fabio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Projective connections; Regular cones; Projective transformations; projective transformations; convex cones; self-dual homogeneous cones; Schwartz lemma},
language = {eng},
month = {6},
number = {2},
pages = {139-147},
publisher = {Accademia Nazionale dei Lincei},
title = {Projective invariant metrics and open convex regular cones. II},
url = {http://eudml.org/doc/287321},
volume = {81},
year = {1987},
}

TY - JOUR
AU - Podestà, Fabio
TI - Projective invariant metrics and open convex regular cones. II
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1987/6//
PB - Accademia Nazionale dei Lincei
VL - 81
IS - 2
SP - 139
EP - 147
AB - The aim of this work, which continues Part I with the same title, is to study a class of projective transformations of open, convex, regular cones in $\mathbb{R}^{n}$ and to prove a structure theorem for affine transformations of a restricted class of cones; we conclude with a version of the Schwarz Lemma holding for affine transformations.
LA - eng
KW - Projective connections; Regular cones; Projective transformations; projective transformations; convex cones; self-dual homogeneous cones; Schwartz lemma
UR - http://eudml.org/doc/287321
ER -

References

top
  1. BORTOLOTTI, E. (1941) - Spazi a Connessione Proiettiva. Ed. Cremonese, Roma. Zbl67.0676.01
  2. EISENHART, L.P. (1927) - Non-Riemannian Geometry, «Amer. Math. Soc. Colloquium. Publ.», Vol. VIII. MR1466961JFM52.0721.02
  3. FRANZONI, T. and VESENTINI, E. (1980) - Holomorphic maps and invariant distances. North Holland, Amsterdam. Zbl0447.46040MR563329
  4. GENTILI, G. (1980) - Projective automorphisms of convex cones, «Rend. Acc. Naz. dei Lincei», Serie VIII, 69 (6), 346-350. Zbl0525.51017MR690303
  5. KOBAYASHI, S. (1984) - Projective Structures of hyperbolic type, «Banach Centre Publications», 12, Warsaw, 127-152. Zbl0558.53019MR961077
  6. KOBAYASHI, S. and SASAKI, (1979) - Projective Invariant Metrics for Einstein Spaces, «Nagoya Math. Journal», 73, 171-174. Zbl0413.53030MR524014
  7. KOBAYASHI, S. and NOMIZU, K. (1963) - Foundations of Differential Geometry. Vol. I, II, Interscience Publishers. Zbl0119.37502MR152974
  8. NAGANO, T. (1959) - The Projective Transformations on a Space with parallel Ricci Tensor, «Kodai Math. Sem. Reports», 11, 131-138. Zbl0097.37503MR109330
  9. RINOW, W. (1961) - Die innere Geometrie der metrischen Räurne, Springer Verlag, Berlin. Zbl0096.16302MR123969
  10. ROTHAUS, O. (1960) - Domains of Positivity. «Abh. Math. Sem.», 189, 189-225. Zbl0096.27903MR121810
  11. VINBERG, E.B. (1963) - Theory of Convex Homogeneous Cones, «Trans. Moscow Math. Soc.» , 12, 340. Zbl0138.43301MR158414
  12. WU, H. (1981) - Some Theorems on projectively Hyperbolicity, «J. Math. Soc. Japan», 33, 79-104. Zbl0458.53016MR597482DOI10.2969/jmsj/03310079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.