On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids

Giovanni Prouse; Anna Zaretti

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1988)

  • Volume: 82, Issue: 1, page 17-20
  • ISSN: 1120-6330

Abstract

top
We demonstrate a theorem of existence and uniqueness on a large scale of the solution of a system of differential disequations associated to a Graffi model relative to the motion of two incompressible viscous fluids.

How to cite

top

Prouse, Giovanni, and Zaretti, Anna. "On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 82.1 (1988): 17-20. <http://eudml.org/doc/287336>.

@article{Prouse1988,
abstract = {We demonstrate a theorem of existence and uniqueness on a large scale of the solution of a system of differential disequations associated to a Graffi model relative to the motion of two incompressible viscous fluids.},
author = {Prouse, Giovanni, Zaretti, Anna},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Partial differential equations and inequalities; Fluid dynamics; Mathematical models; theorem of existence; uniqueness; large scale of the solution},
language = {eng},
month = {3},
number = {1},
pages = {17-20},
publisher = {Accademia Nazionale dei Lincei},
title = {On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids},
url = {http://eudml.org/doc/287336},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Prouse, Giovanni
AU - Zaretti, Anna
TI - On the inequalities associated with a model of Graffi for the motion of a mixture of two viscous, incompressible fluids
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1988/3//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 1
SP - 17
EP - 20
AB - We demonstrate a theorem of existence and uniqueness on a large scale of the solution of a system of differential disequations associated to a Graffi model relative to the motion of two incompressible viscous fluids.
LA - eng
KW - Partial differential equations and inequalities; Fluid dynamics; Mathematical models; theorem of existence; uniqueness; large scale of the solution
UR - http://eudml.org/doc/287336
ER -

References

top
  1. BEIRAO DA VEIGA, H. (1983) - Diffusion on viscous fluids, existence and asymptotic properties of solutions. «Ann. Sc. Norm. Pisa», IV, 10, 1983. Zbl0531.76095MR728440
  2. ANTONOV, S.N. and KAZHIKOV, A.V. (1973) - The mathematical problem of the dynamics of non homogeneous fluids. Novosibirsk. 
  3. LADYZENSKAJA, O.A. and SOLONNIKOV, V.A. (1978) - Unique solvability of an initial and boundary value problem for viscous, incompressible, non homogeneous fluids. «J. Sov. Math.», 9. Zbl0401.76037
  4. LIONS, J.L. (1977) - On some problems connected with the Navier-Stokes equations. Proc. Symp. on non linear equations. Univ. of Wisconsin. Zbl0499.35090MR513812
  5. GRAFFI, D. (1955) - Il teorema di unicità per i fluidi compressibili, perfetti, eterogenei. «Rev. Un. Mat. Arg.», 17. Zbl0074.20206MR82829

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.