Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening

Claudia Comi; Giulio Maier

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1989)

  • Volume: 83, Issue: 1, page 177-186
  • ISSN: 1120-6330

Abstract

top
For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution of the finite-step analysis problem. This communication anticipates in an abbreviated form results to be presented elsewhere in an extended form: here proofs and various comments are omitted.

How to cite

top

Comi, Claudia, and Maier, Giulio. "Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 177-186. <http://eudml.org/doc/287496>.

@article{Comi1989,
abstract = {For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution of the finite-step analysis problem. This communication anticipates in an abbreviated form results to be presented elsewhere in an extended form: here proofs and various comments are omitted.},
author = {Comi, Claudia, Maier, Giulio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Elastoplasticity; Finite-step; Extremum theorem; Convergence; elastic-plastic constitutive laws; nonlinear kinematic and isotropic hardening; finite load step; implicit backward difference scheme; stepwise holonomic formulation; nonlinear mathematical programming; monotonic convergence; iterative algorithm; finite-step analysis problem},
language = {eng},
month = {12},
number = {1},
pages = {177-186},
publisher = {Accademia Nazionale dei Lincei},
title = {Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening},
url = {http://eudml.org/doc/287496},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Comi, Claudia
AU - Maier, Giulio
TI - Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 177
EP - 186
AB - For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution of the finite-step analysis problem. This communication anticipates in an abbreviated form results to be presented elsewhere in an extended form: here proofs and various comments are omitted.
LA - eng
KW - Elastoplasticity; Finite-step; Extremum theorem; Convergence; elastic-plastic constitutive laws; nonlinear kinematic and isotropic hardening; finite load step; implicit backward difference scheme; stepwise holonomic formulation; nonlinear mathematical programming; monotonic convergence; iterative algorithm; finite-step analysis problem
UR - http://eudml.org/doc/287496
ER -

References

top
  1. CASCIARO, R. - MANCUSO, M., 1988. Un approccio numerico al problema dell'elastoplasticità incrementale. Omaggio a Giulio Ceradini: 177-187. 
  2. CORRADI, L., 1983. A Displacement formulation for the Finite Element Elastic-Plastic Problem. Meccanica, 18: 77-91. Zbl0519.73072
  3. DE DONATO, O. - MAIER, G., 1979. Mathematical Programming Methods for the Inelastic Analysis of Reinforced Concrete Frames Allowing for Limited Rotation Capacity. Int. J. for Num. Meth. in Eng., 4: 307-329. Zbl0359.73063
  4. DRUCKER, D.C., 1964. On the Postulate of Stability of Material in Mechanics of Continua. Journal de Mécanique, 3: 235-249. MR167053
  5. FRANCHI, A. - GENNA, F., 1984. Minimum Principles and Initial Stress Method in Elastic-Plastic Analysis. Engineering Structures: 65-69. 
  6. MAIER, G., 1969. Some Theorems for Plastic Strain Rates and Plastic Strains. Journal de Mécanique, 8: 5-19. Zbl0176.25901
  7. MATER, G., 1970. A Matrix Structural Theory of Piecewise-Linear Plasticity with Interacting Yield Planes. Meccanica, 5: 55-66. Zbl0197.23303
  8. MAIER, G. - NAPPI, A., 1989. Backward Difference Time Integration, Nonlinear Programming and Extremum Theorems in Elastoplastic Analysis. Solid Mechanics Archives, 14(1): 37-64. Zbl0679.73021MR994147
  9. MAIER, G. - NOVATI, G., 1988. Externum Theorems for Finite-Step Backward-Difference Analysis of Elastic-Plastic Nonlinearly Hardening Solids. Rend. Acc. Naz. dei Lincei, Cl. Sci., to appear. Zbl0737.73049MR1139818
  10. MARTIN, J.B. - NAPPI, A., An Internal Variable Formulation of Perfectly Plastic and Linear Kinematic and Isotropic Hardening Relations with a Von Mises Yield Condition. European Journal of Mechanics, to appear. Zbl0706.73035
  11. MARTIN, J.B. - REDDY, B.D., 1988. Variational Principles and Solution Algorithms for Internal Variable Formulations of Problems in Plasticity. Omaggio a Giulio Ceradini: 465-477. 
  12. ORTIZ, M. - POPOV, E.P., 1985. Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations. Int. J. Num. Methods in Engineering, 21: 1561-1576. Zbl0585.73057MR810515DOI10.1002/nme.1620210902
  13. ORTIZ, M. - SIMO, J.C., 1986. An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Relations. Int. J. Numer. Methods Eng., 23: 353-366. Zbl0585.73058MR833184DOI10.1002/nme.1620230303
  14. PEREGO, U., 1988. Explicit Backward Difference Operators and Consistent Predictors for Linear Hardening Elastic-Plastic Constitutive Laws. Sol. Mech. Arch., 13: 65-102. Zbl0711.73270
  15. RESENDE, L. - MARTIN, J.B., 1985. Formulation of Drucker-Prager Cap Model. ASCE J. of Eng. Mech., 111, 7: 855-881. 
  16. SIMO, J.C. - TAYLOR, R.L., 1985. Consistent Tangent Operators for Rate-Independent Elastoplasticity. Comp. Methods Appl. Mech. Eng., 48: 101-118. Zbl0535.73025
  17. SIMO, J.C. - KENNEDY, J.G. - GOVINDJEE, S., 1988. Non-Smooth Multisurface Plasticity and Viscoplasticity Loading/Unloading Conditions and Numerical Algorithms. Int. Jour, for Num. Methods in Eng., 26: 2161-2185. Zbl0661.73058MR960023DOI10.1002/nme.1620261003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.