Impulse noise removal based on new hybrid conjugate gradient approach
Morteza Kimiaei; Majid Rostami
Kybernetika (2016)
- Volume: 52, Issue: 5, page 791-823
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKimiaei, Morteza, and Rostami, Majid. "Impulse noise removal based on new hybrid conjugate gradient approach." Kybernetika 52.5 (2016): 791-823. <http://eudml.org/doc/287565>.
@article{Kimiaei2016,
abstract = {Image denoising is a fundamental problem in image processing operations. In this paper, we present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regularization functional. The second phase of our algorithm inherits advantages of both Dai-Yuan (DY) and Hager-Zhang (HZ) conjugate gradient methods to produce the new direction. The descent property of new direction in each iteration and the global convergence results are established under some standard assumptions. Furthermore, we investigate some conjugate gradient algorithms and the complexity analysis of theirs. Numerical experiments are given to illustrate the efficiency of the new hybrid conjugate gradient (HCGN) method for impulse noise removal.},
author = {Kimiaei, Morteza, Rostami, Majid},
journal = {Kybernetika},
keywords = {image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis; image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis},
language = {eng},
number = {5},
pages = {791-823},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Impulse noise removal based on new hybrid conjugate gradient approach},
url = {http://eudml.org/doc/287565},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Kimiaei, Morteza
AU - Rostami, Majid
TI - Impulse noise removal based on new hybrid conjugate gradient approach
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 5
SP - 791
EP - 823
AB - Image denoising is a fundamental problem in image processing operations. In this paper, we present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regularization functional. The second phase of our algorithm inherits advantages of both Dai-Yuan (DY) and Hager-Zhang (HZ) conjugate gradient methods to produce the new direction. The descent property of new direction in each iteration and the global convergence results are established under some standard assumptions. Furthermore, we investigate some conjugate gradient algorithms and the complexity analysis of theirs. Numerical experiments are given to illustrate the efficiency of the new hybrid conjugate gradient (HCGN) method for impulse noise removal.
LA - eng
KW - image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis; image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis
UR - http://eudml.org/doc/287565
ER -
References
top- Barzilai, J., Borwein, J. M., 10.1093/imanum/8.1.141, IMA J. Numer. Anal. 8 (1988), 141-148. MR0967848DOI10.1093/imanum/8.1.141
- Bertalmio, M., Vese, L. A., Sapiro, G., Osher, S., 10.1109/tip.2003.815261, IEEE Trans. Image Processing. 12 (2003), 8, 882-889. DOI10.1109/tip.2003.815261
- Cai, J. F., Chan, R. H., Fiore, C. D., 10.1007/s10851-007-0027-4, J. Math. Imaging Vision. 27 (2007), 79-91. MR2374258DOI10.1007/s10851-007-0027-4
- Cai, J. F., Chan, R. H., Morini, B., 10.1007/978-3-540-33267-1_7, In: Mathematics and Visualization, Springer, Berlin Heidelberg 2007, pp. 109-122. MR2424224DOI10.1007/978-3-540-33267-1_7
- Cai, J. F., Chan, R. H., Nikolova, M., 10.3934/ipi.2008.2.187, Inverse Problem and Imaging. 2 (2008), 187-204. Zbl1154.94306MR2395140DOI10.3934/ipi.2008.2.187
- Cai, J. F., Chan, R. H., Nikolova, M., 10.1007/s10851-009-0169-7, J. Math. Imaging and Vision 36 (2010), 46-53. MR2579308DOI10.1007/s10851-009-0169-7
- Chan, R., Hu, C., Nikolova, M., 10.1109/lsp.2004.838190, IEEE Signal Process. Lett. 11 (2004), 12, 921-924. DOI10.1109/lsp.2004.838190
- Chan, R. H., Ho, C. W., Nikolova, M., 10.1109/tip.2005.852196, IEEE Trans. Image Process. 14 (2005), 1479-1485. DOI10.1109/tip.2005.852196
- Chan, T. F., Shen, J., Zhou, H., 10.1007/s10851-006-5257-3, J. Math. Imaging Vision 25 (2006), 107-125. MR2254441DOI10.1007/s10851-006-5257-3
- Chen, T., Wu, H. R., 10.1109/97.889633, IEEE Signal Process. Lett. 8 (2001), 1-3. DOI10.1109/97.889633
- Dai, Y. H., Ni, Q., Testing different conjugate gradient methods for large-scale unconstrained optimization., J. Comput. Math. 21 (2003), 311-320. Zbl1041.65048MR1978635
- Dai, Y. H., Yuan, Y., 10.1137/s1052623497318992, IEEE SIAM J. Optim. 10 (1999), 177-182. Zbl0957.65061MR1740963DOI10.1137/s1052623497318992
- Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 2, 201-213. Zbl1049.90004MR1875515DOI10.1007/s101070100263
- Fletcher, R., Reeves, C., 10.1093/comjnl/7.2.149, Comput. J. 7 (1964), 149-154. Zbl0132.11701MR0187375DOI10.1093/comjnl/7.2.149
- Gilbert, J. C., Nocedal, J., 10.1137/0802003, SIAM J. Optim. 2 (1992), 21-42. Zbl0767.90082MR1147881DOI10.1137/0802003
- Hager, W. W., Zhang, H., 10.1137/030601880, SIAM J. Optim. 16 (2005), 170-192. Zbl1093.90085MR2177774DOI10.1137/030601880
- Hager, W. W., Zhang, H., A survey of nonlinear conjugate gradeint methods., http://www.math.u.edu/ hager, 2005. MR2548208
- Hestenes, M. R., Stiefel, E. L., 10.6028/jres.049.044, J. Research Nat. Bur. Standards 49 (1952), 409-436. Zbl0048.09901MR0060307DOI10.6028/jres.049.044
- Hwang, H., Haddad, R. A., 10.1109/83.370679, IEEE Trans. Image Process. 4 (1995), 499-502. MR0453105DOI10.1109/83.370679
- Liu, D. C., Nocedal, J., 10.1007/bf01589116, Math. Program. 45 (1989), 503-528. Zbl0696.90048MR1038245DOI10.1007/bf01589116
- Nikolova, M., 10.1023/b:jmiv.0000011920.58935.9c, J. Math. Imaging Vision 20 (2004), 1-2, 99-120. Special issue on mathematics and image analysis. MR2049784DOI10.1023/b:jmiv.0000011920.58935.9c
- Nocedal, J., 10.1090/s0025-5718-1980-0572855-7, Math. Comput. 35 (1980), 773-782. Zbl0464.65037MR0572855DOI10.1090/s0025-5718-1980-0572855-7
- Nocedal, J., Wright, S. J., 10.1007/978-0-387-40065-5, Springer, New York 2006. Zbl1104.65059MR2244940DOI10.1007/978-0-387-40065-5
- Polyak, B. T., 10.1016/0041-5553(69)90035-4, USSR Comp. Math. Math. Phys. 9 (1969), 94-112. DOI10.1016/0041-5553(69)90035-4
- Polyak, E., Ribière, G., Note sur la convergence de directions conjugées., Francaise Informat Recherche Opertionelle, 3e Année 16 (1969), 35-43.
- Powell, M. J. D., 10.1007/BF01593790, Math. Prog. 2 (1977), 241-254. MR0478622DOI10.1007/BF01593790
- Powell, M. J. D., Nonconvex minimization calculations and the conjugate gradient method., In: Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, Springer-Verlag, Berlin 1066 (1984), pp. 122-141. Zbl0531.65035MR0760460
- Yua, G., Huanga, J., Zhou, Y., 10.1016/j.aml.2010.01.010, Appl. Math. Lett. 23 (2010), 555-560. MR2602408DOI10.1016/j.aml.2010.01.010
- Yu, G., Qi, L., Sun, Y., Zhou, Y., Impulse noise removal by a nonmonotone adaptive gradient method., Signal Process. 90 (2010), 2891-2897. Zbl1197.94151
- Zoutendijk, G., Nonlinear programming computational methods., In: Integer and Nonlinear Programming (J. Abadie, ed.), North-Holland, Amsterdam 1970, pp. 37-86. Zbl0336.90057MR0437081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.