Impulse noise removal based on new hybrid conjugate gradient approach

Morteza Kimiaei; Majid Rostami

Kybernetika (2016)

  • Volume: 52, Issue: 5, page 791-823
  • ISSN: 0023-5954

Abstract

top
Image denoising is a fundamental problem in image processing operations. In this paper, we present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regularization functional. The second phase of our algorithm inherits advantages of both Dai-Yuan (DY) and Hager-Zhang (HZ) conjugate gradient methods to produce the new direction. The descent property of new direction in each iteration and the global convergence results are established under some standard assumptions. Furthermore, we investigate some conjugate gradient algorithms and the complexity analysis of theirs. Numerical experiments are given to illustrate the efficiency of the new hybrid conjugate gradient (HCGN) method for impulse noise removal.

How to cite

top

Kimiaei, Morteza, and Rostami, Majid. "Impulse noise removal based on new hybrid conjugate gradient approach." Kybernetika 52.5 (2016): 791-823. <http://eudml.org/doc/287565>.

@article{Kimiaei2016,
abstract = {Image denoising is a fundamental problem in image processing operations. In this paper, we present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regularization functional. The second phase of our algorithm inherits advantages of both Dai-Yuan (DY) and Hager-Zhang (HZ) conjugate gradient methods to produce the new direction. The descent property of new direction in each iteration and the global convergence results are established under some standard assumptions. Furthermore, we investigate some conjugate gradient algorithms and the complexity analysis of theirs. Numerical experiments are given to illustrate the efficiency of the new hybrid conjugate gradient (HCGN) method for impulse noise removal.},
author = {Kimiaei, Morteza, Rostami, Majid},
journal = {Kybernetika},
keywords = {image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis; image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis},
language = {eng},
number = {5},
pages = {791-823},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Impulse noise removal based on new hybrid conjugate gradient approach},
url = {http://eudml.org/doc/287565},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Kimiaei, Morteza
AU - Rostami, Majid
TI - Impulse noise removal based on new hybrid conjugate gradient approach
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 5
SP - 791
EP - 823
AB - Image denoising is a fundamental problem in image processing operations. In this paper, we present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regularization functional. The second phase of our algorithm inherits advantages of both Dai-Yuan (DY) and Hager-Zhang (HZ) conjugate gradient methods to produce the new direction. The descent property of new direction in each iteration and the global convergence results are established under some standard assumptions. Furthermore, we investigate some conjugate gradient algorithms and the complexity analysis of theirs. Numerical experiments are given to illustrate the efficiency of the new hybrid conjugate gradient (HCGN) method for impulse noise removal.
LA - eng
KW - image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis; image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis
UR - http://eudml.org/doc/287565
ER -

References

top
  1. Barzilai, J., Borwein, J. M., 10.1093/imanum/8.1.141, IMA J. Numer. Anal. 8 (1988), 141-148. MR0967848DOI10.1093/imanum/8.1.141
  2. Bertalmio, M., Vese, L. A., Sapiro, G., Osher, S., 10.1109/tip.2003.815261, IEEE Trans. Image Processing. 12 (2003), 8, 882-889. DOI10.1109/tip.2003.815261
  3. Cai, J. F., Chan, R. H., Fiore, C. D., 10.1007/s10851-007-0027-4, J. Math. Imaging Vision. 27 (2007), 79-91. MR2374258DOI10.1007/s10851-007-0027-4
  4. Cai, J. F., Chan, R. H., Morini, B., 10.1007/978-3-540-33267-1_7, In: Mathematics and Visualization, Springer, Berlin Heidelberg 2007, pp. 109-122. MR2424224DOI10.1007/978-3-540-33267-1_7
  5. Cai, J. F., Chan, R. H., Nikolova, M., 10.3934/ipi.2008.2.187, Inverse Problem and Imaging. 2 (2008), 187-204. Zbl1154.94306MR2395140DOI10.3934/ipi.2008.2.187
  6. Cai, J. F., Chan, R. H., Nikolova, M., 10.1007/s10851-009-0169-7, J. Math. Imaging and Vision 36 (2010), 46-53. MR2579308DOI10.1007/s10851-009-0169-7
  7. Chan, R., Hu, C., Nikolova, M., 10.1109/lsp.2004.838190, IEEE Signal Process. Lett. 11 (2004), 12, 921-924. DOI10.1109/lsp.2004.838190
  8. Chan, R. H., Ho, C. W., Nikolova, M., 10.1109/tip.2005.852196, IEEE Trans. Image Process. 14 (2005), 1479-1485. DOI10.1109/tip.2005.852196
  9. Chan, T. F., Shen, J., Zhou, H., 10.1007/s10851-006-5257-3, J. Math. Imaging Vision 25 (2006), 107-125. MR2254441DOI10.1007/s10851-006-5257-3
  10. Chen, T., Wu, H. R., 10.1109/97.889633, IEEE Signal Process. Lett. 8 (2001), 1-3. DOI10.1109/97.889633
  11. Dai, Y. H., Ni, Q., Testing different conjugate gradient methods for large-scale unconstrained optimization., J. Comput. Math. 21 (2003), 311-320. Zbl1041.65048MR1978635
  12. Dai, Y. H., Yuan, Y., 10.1137/s1052623497318992, IEEE SIAM J. Optim. 10 (1999), 177-182. Zbl0957.65061MR1740963DOI10.1137/s1052623497318992
  13. Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 2, 201-213. Zbl1049.90004MR1875515DOI10.1007/s101070100263
  14. Fletcher, R., Reeves, C., 10.1093/comjnl/7.2.149, Comput. J. 7 (1964), 149-154. Zbl0132.11701MR0187375DOI10.1093/comjnl/7.2.149
  15. Gilbert, J. C., Nocedal, J., 10.1137/0802003, SIAM J. Optim. 2 (1992), 21-42. Zbl0767.90082MR1147881DOI10.1137/0802003
  16. Hager, W. W., Zhang, H., 10.1137/030601880, SIAM J. Optim. 16 (2005), 170-192. Zbl1093.90085MR2177774DOI10.1137/030601880
  17. Hager, W. W., Zhang, H., A survey of nonlinear conjugate gradeint methods., http://www.math.u.edu/ hager, 2005. MR2548208
  18. Hestenes, M. R., Stiefel, E. L., 10.6028/jres.049.044, J. Research Nat. Bur. Standards 49 (1952), 409-436. Zbl0048.09901MR0060307DOI10.6028/jres.049.044
  19. Hwang, H., Haddad, R. A., 10.1109/83.370679, IEEE Trans. Image Process. 4 (1995), 499-502. MR0453105DOI10.1109/83.370679
  20. Liu, D. C., Nocedal, J., 10.1007/bf01589116, Math. Program. 45 (1989), 503-528. Zbl0696.90048MR1038245DOI10.1007/bf01589116
  21. Nikolova, M., 10.1023/b:jmiv.0000011920.58935.9c, J. Math. Imaging Vision 20 (2004), 1-2, 99-120. Special issue on mathematics and image analysis. MR2049784DOI10.1023/b:jmiv.0000011920.58935.9c
  22. Nocedal, J., 10.1090/s0025-5718-1980-0572855-7, Math. Comput. 35 (1980), 773-782. Zbl0464.65037MR0572855DOI10.1090/s0025-5718-1980-0572855-7
  23. Nocedal, J., Wright, S. J., 10.1007/978-0-387-40065-5, Springer, New York 2006. Zbl1104.65059MR2244940DOI10.1007/978-0-387-40065-5
  24. Polyak, B. T., 10.1016/0041-5553(69)90035-4, USSR Comp. Math. Math. Phys. 9 (1969), 94-112. DOI10.1016/0041-5553(69)90035-4
  25. Polyak, E., Ribière, G., Note sur la convergence de directions conjugées., Francaise Informat Recherche Opertionelle, 3e Année 16 (1969), 35-43. 
  26. Powell, M. J. D., 10.1007/BF01593790, Math. Prog. 2 (1977), 241-254. MR0478622DOI10.1007/BF01593790
  27. Powell, M. J. D., Nonconvex minimization calculations and the conjugate gradient method., In: Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, Springer-Verlag, Berlin 1066 (1984), pp. 122-141. Zbl0531.65035MR0760460
  28. Yua, G., Huanga, J., Zhou, Y., 10.1016/j.aml.2010.01.010, Appl. Math. Lett. 23 (2010), 555-560. MR2602408DOI10.1016/j.aml.2010.01.010
  29. Yu, G., Qi, L., Sun, Y., Zhou, Y., Impulse noise removal by a nonmonotone adaptive gradient method., Signal Process. 90 (2010), 2891-2897. Zbl1197.94151
  30. Zoutendijk, G., Nonlinear programming computational methods., In: Integer and Nonlinear Programming (J. Abadie, ed.), North-Holland, Amsterdam 1970, pp. 37-86. Zbl0336.90057MR0437081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.