Displaying similar documents to “Initial value problems for fractional functional differential inclusions with Hadamard type derivative”

Existence results for systems of conformable fractional differential equations

Bouharket Bendouma, Alberto Cabada, Ahmed Hammoudi (2019)

Archivum Mathematicum

Similarity:

In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is L α 1 -carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem.

Left general fractional monotone approximation theory

George A. Anastassiou (2016)

Applicationes Mathematicae

Similarity:

We introduce left general fractional Caputo style derivatives with respect to an absolutely continuous strictly increasing function g. We give various examples of such fractional derivatives for different g. Let f be a p-times continuously differentiable function on [a,b], and let L be a linear left general fractional differential operator such that L(f) is non-negative over a closed subinterval I of [a,b]. We find a sequence of polynomials Qₙ of degree ≤n such that L(Qₙ) is non-negative...

Suitable domains to define fractional integrals of Weyl via fractional powers of operators

Celso Martínez, Antonia Redondo, Miguel Sanz (2011)

Studia Mathematica

Similarity:

We present a new method to study the classical fractional integrals of Weyl. This new approach basically consists in considering these operators in the largest space where they make sense. In particular, we construct a theory of fractional integrals of Weyl by studying these operators in an appropriate Fréchet space. This is a function space which contains the L p ( ) -spaces, and it appears in a natural way if we wish to identify these fractional operators with fractional powers of a suitable...

Functions of finite fractional variation and their applications to fractional impulsive equations

Dariusz Idczak (2017)

Czechoslovak Mathematical Journal

Similarity:

We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ -additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ -additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.

On a partial Hadamard fractional integral inclusion

Aurelian Cernea (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.

Boundary value problems for differential inclusions with fractional order

Mouffak Benchohra, Samira Hamani (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we shall establish sufficient conditions for the existence of solutions for a boundary value problem for fractional differential inclusions. Both cases of convex valued and nonconvex valued right hand sides are considered.

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...