On generalized Douglas-Weyl Randers metrics
Tayebeh Tabatabaeifar; Behzad Najafi; Mehdi Rafie-Rad
Czechoslovak Mathematical Journal (2021)
- Issue: 1, page 155-172
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTabatabaeifar, Tayebeh, Najafi, Behzad, and Rafie-Rad, Mehdi. "On generalized Douglas-Weyl Randers metrics." Czechoslovak Mathematical Journal (2021): 155-172. <http://eudml.org/doc/296950>.
@article{Tabatabaeifar2021,
abstract = {We characterize generalized Douglas-Weyl Randers metrics in terms of their Zermelo navigation data. Then, we study the Randers metrics induced by some important classes of almost contact metrics. Furthermore, we construct a family of generalized Douglas-Weyl Randers metrics which are not $R$-quadratic. We show that the Randers metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic $S$-curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold is not Einsteinian. By using $D$-homothetic deformation of a Kenmotsu or Sasakian manifold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the Lie group of projective transformations does not act transitively on the set of generalized Douglas-Weyl Randers metrics.},
author = {Tabatabaeifar, Tayebeh, Najafi, Behzad, Rafie-Rad, Mehdi},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Douglas-Weyl metric; Randers metric; Kenmotsu manifold; Sasakian manifold},
language = {eng},
number = {1},
pages = {155-172},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized Douglas-Weyl Randers metrics},
url = {http://eudml.org/doc/296950},
year = {2021},
}
TY - JOUR
AU - Tabatabaeifar, Tayebeh
AU - Najafi, Behzad
AU - Rafie-Rad, Mehdi
TI - On generalized Douglas-Weyl Randers metrics
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 155
EP - 172
AB - We characterize generalized Douglas-Weyl Randers metrics in terms of their Zermelo navigation data. Then, we study the Randers metrics induced by some important classes of almost contact metrics. Furthermore, we construct a family of generalized Douglas-Weyl Randers metrics which are not $R$-quadratic. We show that the Randers metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic $S$-curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold is not Einsteinian. By using $D$-homothetic deformation of a Kenmotsu or Sasakian manifold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the Lie group of projective transformations does not act transitively on the set of generalized Douglas-Weyl Randers metrics.
LA - eng
KW - generalized Douglas-Weyl metric; Randers metric; Kenmotsu manifold; Sasakian manifold
UR - http://eudml.org/doc/296950
ER -
References
top- Bácsó, S., Papp, I., 10.1023/B:MAHU.0000038974.24588.83, Period. Math. Hung. 48 (2004), 181-184. (2004) Zbl1104.53015MR2077695DOI10.1023/B:MAHU.0000038974.24588.83
- Bao, D., Robles, C., Ricci and flag curvatures in Finsler geometry, A Sampler of Riemann-Finsler Geometry Mathematical Sciences Research Institute Publications 50. Cambridge University Press, Cambridge (2004), 197-259. (2004) Zbl1076.53093MR2132660
- Blair, D. E., 10.1007/978-0-8176-4959-3, Progress in Mathematics 203. Birkhäuser, Basel (2010). (2010) Zbl1246.53001MR2682326DOI10.1007/978-0-8176-4959-3
- Cheng, X., Shen, Z., 10.1007/978-3-642-24888-7, Springer, Berlin (2012). (2012) Zbl1268.53081MR3015145DOI10.1007/978-3-642-24888-7
- Emamian, M. H., Tayebi, A., Generalized Douglas-Weyl Finsler metrics, Iran. J. Math. Sci. Inform. 10 (2015), 67-75. (2015) Zbl1336.53086MR3497134
- Hall, G., 10.2298/PIM1308055H, Publ. Inst. Math., Nouv. Sér. 94 (2013), 55-65. (2013) Zbl1340.53013MR3137490DOI10.2298/PIM1308055H
- Hasegawa, I., Sabau, V. S., Shimada, H., 10.14492/hokmj/1285766001, Hokkaido Math. J. 33 (2004), 215-232. (2004) Zbl1062.53014MR2034815DOI10.14492/hokmj/1285766001
- Li, B., Shen, Z., 10.1142/S0129167X09005315, Int. J. Math. 20 (2009), 369-376. (2009) Zbl1171.53020MR2500075DOI10.1142/S0129167X09005315
- Milkovszki, T., Muzsnay, Z., 10.21136/CMJ.2017.0010-16, Czech. Math. J. 67 (2017), 469-495. (2017) Zbl06738532MR3661054DOI10.21136/CMJ.2017.0010-16
- Nagaraja, H. G., Kumar, D. L. Kiran, Prasad, V. S., 10.22034/kjm.2018.57725, Khayyam J. Math. 4 (2018), 102-109. (2018) Zbl1412.53048MR3769595DOI10.22034/kjm.2018.57725
- Najafi, B., Bidabad, B., Tayebi, A., On -quadratic Finsler metrics, Iran. J. Sci. Technol., Trans. A, Sci. 4 (2007), 439-443. (2007) Zbl1169.53319MR2525916
- Najafi, B., Shen, Z., Tayebi, A., On a projective class of Finsler metrics, Publ. Math. 70 (2007), 211-219. (2007) Zbl1127.53017MR2288477
- Najafi, B., Tayebi, A., Some curvature properties of -metrics, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 277-291. (2017) Zbl1399.53034MR3701890
- Oubiña, A. J., New classes of almost contact metric structure, Publ. Math. 32 (1985), 187-193. (1985) Zbl0611.53032MR0834769
- Shen, Z., 10.1006/aima.1997.1630, Adv. Math. 128 (1997), 306-328. (1997) Zbl0919.53021MR1454401DOI10.1006/aima.1997.1630
- Shen, Y., Yu, Y., 10.1142/S0129167X08004789, Int. J. Math. 19 (2008), 503-520. (2008) Zbl1152.53015MR2418194DOI10.1142/S0129167X08004789
- Tanno, S., 10.1215/ijm/1256053971, Ill. J. Math. 12 (1968), 700-717. (1968) Zbl0165.24703MR0234486DOI10.1215/ijm/1256053971
- Tayebi, A., Barzegari, M., 10.1016/j.indag.2016.01.002, Indag. Math., New Ser. 27 (2016), 670-683. (2016) Zbl1343.53077MR3505987DOI10.1016/j.indag.2016.01.002
- Tayebi, A., Najafi, B., 10.1016/j.geomphys.2019.01.006, J. Geom. Phys. 140 (2019), 265-270. (2019) Zbl1417.53024MR3925072DOI10.1016/j.geomphys.2019.01.006
- Tayebi, A., Peyghan, E., 10.3103/S1068362312020033, J. Contemp. Math. Anal., Armen. Acad. Sci. 47 (2012), 70-77. (2012) Zbl1302.53081MR3287918DOI10.3103/S1068362312020033
- Tayebi, A., Sadeghi, H., 10.1007/s10114-015-3418-2, Acta Math. Sin., Engl. Ser. 31 (2015), 1611-1620. (2015) Zbl1327.53026MR3397088DOI10.1007/s10114-015-3418-2
- Tayebi, A., Sadeghi, H., Peyghan, E., On generalized Douglas-Weyl spaces, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 587-594. (2013) Zbl1272.53067MR3071751
- Wang, Y., 10.21136/CMJ.2017.0377-15, Czech. Math. J. 67 (2017), 73-86. (2017) Zbl1424.53112MR3632999DOI10.21136/CMJ.2017.0377-15
- Xing, H., The geometric meaning of Randers metrics with isotropic -curvature, Adv. Math., Beijing 34 (2005), 717-730. (2005) MR2213060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.