On generalized Douglas-Weyl Randers metrics

Tayebeh Tabatabaeifar; Behzad Najafi; Mehdi Rafie-Rad

Czechoslovak Mathematical Journal (2021)

  • Issue: 1, page 155-172
  • ISSN: 0011-4642

Abstract

top
We characterize generalized Douglas-Weyl Randers metrics in terms of their Zermelo navigation data. Then, we study the Randers metrics induced by some important classes of almost contact metrics. Furthermore, we construct a family of generalized Douglas-Weyl Randers metrics which are not R -quadratic. We show that the Randers metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic S -curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold is not Einsteinian. By using D -homothetic deformation of a Kenmotsu or Sasakian manifold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the Lie group of projective transformations does not act transitively on the set of generalized Douglas-Weyl Randers metrics.

How to cite

top

Tabatabaeifar, Tayebeh, Najafi, Behzad, and Rafie-Rad, Mehdi. "On generalized Douglas-Weyl Randers metrics." Czechoslovak Mathematical Journal (2021): 155-172. <http://eudml.org/doc/296950>.

@article{Tabatabaeifar2021,
abstract = {We characterize generalized Douglas-Weyl Randers metrics in terms of their Zermelo navigation data. Then, we study the Randers metrics induced by some important classes of almost contact metrics. Furthermore, we construct a family of generalized Douglas-Weyl Randers metrics which are not $R$-quadratic. We show that the Randers metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic $S$-curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold is not Einsteinian. By using $D$-homothetic deformation of a Kenmotsu or Sasakian manifold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the Lie group of projective transformations does not act transitively on the set of generalized Douglas-Weyl Randers metrics.},
author = {Tabatabaeifar, Tayebeh, Najafi, Behzad, Rafie-Rad, Mehdi},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Douglas-Weyl metric; Randers metric; Kenmotsu manifold; Sasakian manifold},
language = {eng},
number = {1},
pages = {155-172},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized Douglas-Weyl Randers metrics},
url = {http://eudml.org/doc/296950},
year = {2021},
}

TY - JOUR
AU - Tabatabaeifar, Tayebeh
AU - Najafi, Behzad
AU - Rafie-Rad, Mehdi
TI - On generalized Douglas-Weyl Randers metrics
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 155
EP - 172
AB - We characterize generalized Douglas-Weyl Randers metrics in terms of their Zermelo navigation data. Then, we study the Randers metrics induced by some important classes of almost contact metrics. Furthermore, we construct a family of generalized Douglas-Weyl Randers metrics which are not $R$-quadratic. We show that the Randers metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic $S$-curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold is not Einsteinian. By using $D$-homothetic deformation of a Kenmotsu or Sasakian manifold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the Lie group of projective transformations does not act transitively on the set of generalized Douglas-Weyl Randers metrics.
LA - eng
KW - generalized Douglas-Weyl metric; Randers metric; Kenmotsu manifold; Sasakian manifold
UR - http://eudml.org/doc/296950
ER -

References

top
  1. Bácsó, S., Papp, I., 10.1023/B:MAHU.0000038974.24588.83, Period. Math. Hung. 48 (2004), 181-184. (2004) Zbl1104.53015MR2077695DOI10.1023/B:MAHU.0000038974.24588.83
  2. Bao, D., Robles, C., Ricci and flag curvatures in Finsler geometry, A Sampler of Riemann-Finsler Geometry Mathematical Sciences Research Institute Publications 50. Cambridge University Press, Cambridge (2004), 197-259. (2004) Zbl1076.53093MR2132660
  3. Blair, D. E., 10.1007/978-0-8176-4959-3, Progress in Mathematics 203. Birkhäuser, Basel (2010). (2010) Zbl1246.53001MR2682326DOI10.1007/978-0-8176-4959-3
  4. Cheng, X., Shen, Z., 10.1007/978-3-642-24888-7, Springer, Berlin (2012). (2012) Zbl1268.53081MR3015145DOI10.1007/978-3-642-24888-7
  5. Emamian, M. H., Tayebi, A., Generalized Douglas-Weyl Finsler metrics, Iran. J. Math. Sci. Inform. 10 (2015), 67-75. (2015) Zbl1336.53086MR3497134
  6. Hall, G., 10.2298/PIM1308055H, Publ. Inst. Math., Nouv. Sér. 94 (2013), 55-65. (2013) Zbl1340.53013MR3137490DOI10.2298/PIM1308055H
  7. Hasegawa, I., Sabau, V. S., Shimada, H., 10.14492/hokmj/1285766001, Hokkaido Math. J. 33 (2004), 215-232. (2004) Zbl1062.53014MR2034815DOI10.14492/hokmj/1285766001
  8. Li, B., Shen, Z., 10.1142/S0129167X09005315, Int. J. Math. 20 (2009), 369-376. (2009) Zbl1171.53020MR2500075DOI10.1142/S0129167X09005315
  9. Milkovszki, T., Muzsnay, Z., 10.21136/CMJ.2017.0010-16, Czech. Math. J. 67 (2017), 469-495. (2017) Zbl06738532MR3661054DOI10.21136/CMJ.2017.0010-16
  10. Nagaraja, H. G., Kumar, D. L. Kiran, Prasad, V. S., 10.22034/kjm.2018.57725, Khayyam J. Math. 4 (2018), 102-109. (2018) Zbl1412.53048MR3769595DOI10.22034/kjm.2018.57725
  11. Najafi, B., Bidabad, B., Tayebi, A., On R -quadratic Finsler metrics, Iran. J. Sci. Technol., Trans. A, Sci. 4 (2007), 439-443. (2007) Zbl1169.53319MR2525916
  12. Najafi, B., Shen, Z., Tayebi, A., On a projective class of Finsler metrics, Publ. Math. 70 (2007), 211-219. (2007) Zbl1127.53017MR2288477
  13. Najafi, B., Tayebi, A., Some curvature properties of ( α , β ) -metrics, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 277-291. (2017) Zbl1399.53034MR3701890
  14. Oubiña, A. J., New classes of almost contact metric structure, Publ. Math. 32 (1985), 187-193. (1985) Zbl0611.53032MR0834769
  15. Shen, Z., 10.1006/aima.1997.1630, Adv. Math. 128 (1997), 306-328. (1997) Zbl0919.53021MR1454401DOI10.1006/aima.1997.1630
  16. Shen, Y., Yu, Y., 10.1142/S0129167X08004789, Int. J. Math. 19 (2008), 503-520. (2008) Zbl1152.53015MR2418194DOI10.1142/S0129167X08004789
  17. Tanno, S., 10.1215/ijm/1256053971, Ill. J. Math. 12 (1968), 700-717. (1968) Zbl0165.24703MR0234486DOI10.1215/ijm/1256053971
  18. Tayebi, A., Barzegari, M., 10.1016/j.indag.2016.01.002, Indag. Math., New Ser. 27 (2016), 670-683. (2016) Zbl1343.53077MR3505987DOI10.1016/j.indag.2016.01.002
  19. Tayebi, A., Najafi, B., 10.1016/j.geomphys.2019.01.006, J. Geom. Phys. 140 (2019), 265-270. (2019) Zbl1417.53024MR3925072DOI10.1016/j.geomphys.2019.01.006
  20. Tayebi, A., Peyghan, E., 10.3103/S1068362312020033, J. Contemp. Math. Anal., Armen. Acad. Sci. 47 (2012), 70-77. (2012) Zbl1302.53081MR3287918DOI10.3103/S1068362312020033
  21. Tayebi, A., Sadeghi, H., 10.1007/s10114-015-3418-2, Acta Math. Sin., Engl. Ser. 31 (2015), 1611-1620. (2015) Zbl1327.53026MR3397088DOI10.1007/s10114-015-3418-2
  22. Tayebi, A., Sadeghi, H., Peyghan, E., On generalized Douglas-Weyl spaces, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 587-594. (2013) Zbl1272.53067MR3071751
  23. Wang, Y., 10.21136/CMJ.2017.0377-15, Czech. Math. J. 67 (2017), 73-86. (2017) Zbl1424.53112MR3632999DOI10.21136/CMJ.2017.0377-15
  24. Xing, H., The geometric meaning of Randers metrics with isotropic S -curvature, Adv. Math., Beijing 34 (2005), 717-730. (2005) MR2213060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.