Displaying similar documents to “Minimal Reeb vector fields on almost Kenmotsu manifolds”

On almost cosymplectic (κ,μ,ν)-spaces

Piotr Dacko, Zbigniew Olszak (2005)

Banach Center Publications

Similarity:

An almost cosymplectic (κ,μ,ν)-space is by definition an almost cosymplectic manifold whose structure tensor fields φ, ξ, η, g satisfy a certain special curvature condition (see formula (eq1b)). This condition is invariant with respect to the so-called -homothetic transformations of almost cosymplectic structures. For such manifolds, the tensor fields φ, h ( = ( 1 / 2 ) ξ φ ), A ( = -∇ξ) fulfill a certain system of differential equations. It is proved that the leaves of the canonical foliation of an...

Vanishing conharmonic tensor of normal locally conformal almost cosymplectic manifold

Farah H. Al-Hussaini, Aligadzhi R. Rustanov, Habeeb M. Abood (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The main purpose of the present paper is to study the geometric properties of the conharmonic curvature tensor of normal locally conformal almost cosymplectic manifolds (normal LCAC-manifold). In particular, three conhoronic invariants are distinguished with regard to the vanishing conharmonic tensor. Subsequentaly, three classes of normal LCAC-manifolds are established. Moreover, it is proved that the manifolds of these classes are η -Einstein manifolds of type ( α , β ) . Furthermore, we have...

Isotropic almost complex structures and harmonic unit vector fields

Amir Baghban, Esmaeil Abedi (2018)

Archivum Mathematicum

Similarity:

Isotropic almost complex structures J δ , σ define a class of Riemannian metrics g δ , σ on tangent bundles of Riemannian manifolds which are a generalization of the Sasaki metric. In this paper, some results will be obtained on the integrability of these almost complex structures and the notion of a harmonic unit vector field will be introduced with respect to the metrics g δ , 0 . Furthermore, the necessary and sufficient conditions for a unit vector field to be a harmonic unit vector field will be obtained. ...

O-minimal version of Whitney's extension theorem

Krzysztof Kurdyka, Wiesław Pawłucki (2014)

Studia Mathematica

Similarity:

This is a generalized and improved version of our earlier article [Studia Math. 124 (1997)] on the Whitney extension theorem for subanalytic p -Whitney fields (with p finite). In this new version we consider Whitney fields definable in an arbitrary o-minimal structure on any real closed field R and obtain an extension which is a p -function definable in the same o-minimal structure. The Whitney fields that we consider are defined on any locally closed definable subset of Rⁿ. In such a...

Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions

Yaning Wang, Ximin Liu (2014)

Annales Polonici Mathematici

Similarity:

We consider an almost Kenmotsu manifold M 2 n + 1 with the characteristic vector field ξ belonging to the (k,μ)’-nullity distribution and h’ ≠ 0 and we prove that M 2 n + 1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold, provided that M 2 n + 1 is ξ-Riemannian-semisymmetric. Moreover, if M 2 n + 1 is a ξ-Riemannian-semisymmetric almost Kenmotsu manifold such that ξ belongs to the (k,μ)-nullity distribution, we prove...

On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions

Gopal Ghosh, Uday Chand De (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field ξ belonging to the ( k , μ ) ' -nullity distribution and ( k , μ ) -nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with ξ belonging to ( k , μ ) ' - and ( k , μ ) -nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with ξ belonging to ( k , μ ) ' -nullity...

Estimates of the Kobayashi-Royden metric in almost complex manifolds

Hervé Gaussier, Alexandre Sukhov (2005)

Bulletin de la Société Mathématique de France

Similarity:

We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold ( M , J ) admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in M and to give a sufficient condition for the complete hyperbolicity of a domain in ( M , J ) .

O-minimal fields with standard part map

Jana Maříková (2010)

Fundamenta Mathematicae

Similarity:

Let R be an o-minimal field and V a proper convex subring with residue field k and standard part (residue) map st: V → k. Let k i n d be the expansion of k by the standard parts of the definable relations in R. We investigate the definable sets in k i n d and conditions on (R,V) which imply o-minimality of k i n d . We also show that if R is ω-saturated and V is the convex hull of ℚ in R, then the sets definable in k i n d are exactly the standard parts of the sets definable in (R,V).

On real flag manifolds with cup-length equal to its dimension

Marko Radovanović (2020)

Czechoslovak Mathematical Journal

Similarity:

We prove that for any positive integers n 1 , n 2 , ... , n k there exists a real flag manifold F ( 1 , ... , 1 , n 1 , n 2 , ... , n k ) with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.

Automorphism groups of minimal real-analytic CR manifolds

Robert Juhlin, Bernhard Lamel (2013)

Journal of the European Mathematical Society

Similarity:

We show that the local automorphism group of a minimal real-analytic CR manifold M is a finite dimensional Lie group if (and only if) M is holomorphically nondegenerate by constructing a jet parametrization.

Some type of semisymmetry on two classes of almost Kenmotsu manifolds

Dibakar Dey, Pradip Majhi (2021)

Communications in Mathematics

Similarity:

The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a ( k , μ ) -almost Kenmotsu manifold satisfying the curvature condition Q · R = 0 is locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) . Also in ( k , μ ) -almost Kenmotsu manifolds the following conditions: (1) local symmetry ( R = 0 ) , (2) semisymmetry ( R · R = 0 ) , (3) Q ( S , R ) = 0 , (4) R · R = Q ( S , R ) , (5) locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) are equivalent. Further, it is proved that a ( k , μ ) ' -almost Kenmotsu manifold...

On the classification of 3 -dimensional F -manifold algebras

Zhiqi Chen, Jifu Li, Ming Ding (2022)

Czechoslovak Mathematical Journal

Similarity:

F -manifold algebras are focused on the algebraic properties of the tangent sheaf of F -manifolds. The local classification of 3-dimensional F -manifolds has been given in A. Basalaev, C. Hertling (2021). We study the classification of 3-dimensional F -manifold algebras over the complex field .

Induced almost continuous functions on hyperspaces

Alejandro Illanes (2006)

Colloquium Mathematicae

Similarity:

For a metric continuum X, let C(X) (resp., 2 X ) be the hyperspace of subcontinua (resp., nonempty closed subsets) of X. Let f: X → Y be an almost continuous function. Let C(f): C(X) → C(Y) and 2 f : 2 X 2 Y be the induced functions given by C ( f ) ( A ) = c l Y ( f ( A ) ) and 2 f ( A ) = c l Y ( f ( A ) ) . In this paper, we prove that: • If 2 f is almost continuous, then f is continuous. • If C(f) is almost continuous and X is locally connected, then f is continuous. • If X is not locally connected, then there exists an almost continuous function f: X → [0,1]...

Exotic Deformations of Calabi-Yau Manifolds

Paolo de Bartolomeis, Adriano Tomassini (2013)

Annales de l’institut Fourier

Similarity:

We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) 2 n -dimensional symplectic manifolds ( M , κ ) endowed with a κ -tamed almost complex structure J and with a nowhere vanishing and normalized section ϵ of the bundle Λ J n , 0 ( M ) satisfying the condition ¯ J ϵ = 0 . We study the moduli space 𝔐 of QIS deformations of a given Calabi-Yau manifold, computing its tangent space...

Holonomy groups of complete flat manifolds

Michał Sadowski (2007)

Banach Center Publications

Similarity:

We present short direct proofs of two known properties of complete flat manifolds. They say that the diffeomorphism classes of m-dimensional complete flat manifolds form a finite set S C F ( m ) and that each element of S C F ( m ) is represented by a manifold with finite holonomy group.

Bi-Legendrian connections

Beniamino Cappelletti Montano (2005)

Annales Polonici Mathematici

Similarity:

We define the concept of a bi-Legendrian connection associated to a bi-Legendrian structure on an almost -manifold M 2 n + r . Among other things, we compute the torsion of this connection and prove that the curvature vanishes along the leaves of the bi-Legendrian structure. Moreover, we prove that if the bi-Legendrian connection is flat, then the bi-Legendrian structure is locally equivalent to the standard structure on 2 n + r .

On the structure of closed 3-manifolds

Jan Mycielski (2003)

Fundamenta Mathematicae

Similarity:

We will show that for every irreducible closed 3-manifold M, other than the real projective space P³, there exists a piecewise linear map f: S → M where S is a non-orientable closed 2-manifold of Euler characteristic χ ≡ 2 (mod 3) such that | f - 1 ( x ) | 2 for all x ∈ M, the closure of the set x M : | f - 1 ( x ) | = 2 is a cubic graph G such that S - f - 1 ( G ) consists of 1/3(2-χ) + 2 simply connected regions, M - f(S) consists of two disjoint open 3-cells such that f(S) is the boundary of each of them, and f has some additional interesting...

A note on minimal zero-sum sequences over ℤ

Papa A. Sissokho (2014)

Acta Arithmetica

Similarity:

A zero-sum sequence over ℤ is a sequence with terms in ℤ that sum to 0. It is called minimal if it does not contain a proper zero-sum subsequence. Consider a minimal zero-sum sequence over ℤ with positive terms a , . . . , a h and negative terms b , . . . , b k . We prove that h ≤ ⌊σ⁺/k⌋ and k ≤ ⌊σ⁺/h⌋, where σ = i = 1 h a i = - j = 1 k b j . These bounds are tight and improve upon previous results. We also show a natural partial order structure on the collection of all minimal zero-sum sequences over the set i∈ ℤ : -n ≤ i ≤ n for any positive...

The almost Daugavet property and translation-invariant subspaces

Simon Lücking (2014)

Colloquium Mathematicae

Similarity:

Let G be a metrizable, compact abelian group and let Λ be a subset of its dual group Ĝ. We show that C Λ ( G ) has the almost Daugavet property if and only if Λ is an infinite set, and that L ¹ Λ ( G ) has the almost Daugavet property if and only if Λ is not a Λ(1) set.