Displaying similar documents to “On subgraphs without large components”

Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles

Donghan Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let G = ( V ( G ) , E ( G ) ) be a simple graph and E G ( v ) denote the set of edges incident with a vertex v . A neighbor sum distinguishing (NSD) total coloring φ of G is a proper total coloring of G such that z E G ( u ) { u } φ ( z ) z E G ( v ) { v } φ ( z ) for each edge u v E ( G ) . Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree Δ admits an NSD total ( Δ + 3 ) -coloring. We prove that the list version of this conjecture holds for any IC-planar graph with Δ 11 but without 5 -cycles by applying the Combinatorial Nullstellensatz.

Note on improper coloring of 1 -planar graphs

Yanan Chu, Lei Sun, Jun Yue (2019)

Czechoslovak Mathematical Journal

Similarity:

A graph G = ( V , E ) is called improperly ( d 1 , , d k ) -colorable if the vertex set V can be partitioned into subsets V 1 , , V k such that the graph G [ V i ] induced by the vertices of V i has maximum degree at most d i for all 1 i k . In this paper, we mainly study the improper coloring of 1 -planar graphs and show that 1 -planar graphs with girth at least 7 are ( 2 , 0 , 0 , 0 ) -colorable.

On g c -colorings of nearly bipartite graphs

Yuzhuo Zhang, Xia Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple graph, let d ( v ) denote the degree of a vertex v and let g be a nonnegative integer function on V ( G ) with 0 g ( v ) d ( v ) for each vertex v V ( G ) . A g c -coloring of G is an edge coloring such that for each vertex v V ( G ) and each color c , there are at least g ( v ) edges colored c incident with v . The g c -chromatic index of G , denoted by χ g c ' ( G ) , is the maximum number of colors such that a g c -coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g ( G ) or δ g ( G ) - 1 , where δ g ( G ) = min v V ( G ) d ( v ) / g ( v ) . A graph G is nearly bipartite,...

Proper connection number of bipartite graphs

Jun Yue, Meiqin Wei, Yan Zhao (2018)

Czechoslovak Mathematical Journal

Similarity:

An edge-colored graph G is proper connected if every pair of vertices is connected by a proper path. The proper connection number of a connected graph G , denoted by pc ( G ) , is the smallest number of colors that are needed to color the edges of G in order to make it proper connected. In this paper, we obtain the sharp upper bound for pc ( G ) of a general bipartite graph G and a series of extremal graphs. Additionally, we give a proper 2 -coloring for a connected bipartite graph G having δ ( G ) 2 and a dominating...

On distinguishing and distinguishing chromatic numbers of hypercubes

Werner Klöckl (2008)

Discussiones Mathematicae Graph Theory

Similarity:

The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number χ D ( G ) of G. Extending these concepts to infinite graphs we prove that D ( Q ) = 2 and χ D ( Q ) = 3 , where Q denotes the hypercube of countable dimension. We also show that χ D ( Q ) = 4 , thereby completing the investigation of finite hypercubes with respect to χ D . Our...

Edge-colouring of graphs and hereditary graph properties

Samantha Dorfling, Tomáš Vetrík (2016)

Czechoslovak Mathematical Journal

Similarity:

Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph G , a hereditary graph property 𝒫 and l 1 we define χ 𝒫 , l ' ( G ) to be the minimum number of colours needed to properly colour the edges of G , such that any subgraph of G induced by edges coloured by (at most) l colours is in 𝒫 . We present a necessary and sufficient condition for the existence of χ 𝒫 , l ' ( G ) . We focus on edge-colourings of graphs with respect to the hereditary...

Degree sums of adjacent vertices for traceability of claw-free graphs

Tao Tian, Liming Xiong, Zhi-Hong Chen, Shipeng Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

The line graph of a graph G , denoted by L ( G ) , has E ( G ) as its vertex set, where two vertices in L ( G ) are adjacent if and only if the corresponding edges in G have a vertex in common. For a graph H , define σ ¯ 2 ( H ) = min { d ( u ) + d ( v ) : u v E ( H ) } . Let H be a 2-connected claw-free simple graph of order n with δ ( H ) 3 . We show that, if σ ¯ 2 ( H ) 1 7 ( 2 n - 5 ) and n is sufficiently large, then either H is traceable or the Ryjáček’s closure cl ( H ) = L ( G ) , where G is an essentially 2 -edge-connected triangle-free graph that can be contracted to one of the two graphs of order 10...

The sum number of d-partite complete hypergraphs

Hanns-Martin Teichert (1999)

Discussiones Mathematicae Graph Theory

Similarity:

A d-uniform hypergraph is a sum hypergraph iff there is a finite S ⊆ IN⁺ such that is isomorphic to the hypergraph d ( S ) = ( V , ) , where V = S and = v , . . . , v d : ( i j v i v j ) i = 1 d v i S . For an arbitrary d-uniform hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices w , . . . , w σ V such that w , . . . , w σ is a sum hypergraph. In this paper, we prove σ ( n , . . . , n d d ) = 1 + i = 1 d ( n i - 1 ) + m i n 0 , 1 / 2 ( i = 1 d - 1 ( n i - 1 ) - n d ) , where n , . . . , n d d denotes the d-partite complete hypergraph; this generalizes the corresponding result of Hartsfield and Smyth [8] for complete bipartite graphs.

Acyclic 4-choosability of planar graphs without 4-cycles

Yingcai Sun, Min Chen (2020)

Czechoslovak Mathematical Journal

Similarity:

A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G . In other words, each cycle of G must be colored with at least three colors. Given a list assignment L = { L ( v ) : v V } , if there exists an acyclic coloring π of G such that π ( v ) L ( v ) for all v V , then we say that G is acyclically L -colorable. If G is acyclically L -colorable for any list assignment L with | L ( v ) | k for all v V , then G is acyclically k -choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without...

Saturation numbers for linear forests P 6 + t P 2

Jingru Yan (2023)

Czechoslovak Mathematical Journal

Similarity:

A graph G is H -saturated if it contains no H as a subgraph, but does contain H after the addition of any edge in the complement of G . The saturation number, sat ( n , H ) , is the minimum number of edges of a graph in the set of all H -saturated graphs of order n . We determine the saturation number sat ( n , P 6 + t P 2 ) for n 10 3 t + 10 and characterize the extremal graphs for n > 10 3 t + 20 .

On multiset colorings of generalized corona graphs

Yun Feng, Wensong Lin (2016)

Mathematica Bohemica

Similarity:

A vertex k -coloring of a graph G is a if M ( u ) M ( v ) for every edge u v E ( G ) , where M ( u ) and M ( v ) denote the multisets of colors of the neighbors of u and v , respectively. The minimum k for which G has a multiset k -coloring is the χ m ( G ) of G . For an integer 0 , the - of a graph G , cor ( G ) , is the graph obtained from G by adding, for each vertex v in G , new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for - of all complete graphs, the regular complete...

Even factor of bridgeless graphs containing two specified edges

Nastaran Haghparast, Dariush Kiani (2018)

Czechoslovak Mathematical Journal

Similarity:

An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Let G be a bridgeless simple graph with minimum degree at least 3 . Jackson and Yoshimoto (2007) showed that G has an even factor containing two arbitrary prescribed edges. They also proved that G has an even factor in which each component has order at least four. Moreover, Xiong, Lu and Han (2009) showed that for each pair of edges e 1 and e 2 of G , there is an even factor containing e 1 and e 2 ...