A family of hyperbolic-type control schemes for robot manipulators

Fernando Reyes-Cortes; Olga Felix-Beltran; Jaime Cid-Monjaraz; Gweni Alonso-Aruffo

Kybernetika (2019)

  • Volume: 55, Issue: 3, page 561-585
  • ISSN: 0023-5954

Abstract

top
This paper deals with the global position control problem of robot manipulators in joint space, a new family of control schemes consisting of a suitable combination of hyperbolic functions is presented. The proposed control family includes a large class of bounded hyperbolic-type control schemes to drive both position error and derivative action terms plus gravity compensation. To ensure global asymptotic stability of closed-loop system equilibrium point, we propose an energy-shaping based strict Lyapunov function. To verify the efficiency of the proposed control algorithm, an experimental comparative analysis between the well known unbounded linear PD control and three hyperbolic-type control schemes of the proposed family on a three degrees of freedom direct-drive robot manipulator is analysed.

How to cite

top

Reyes-Cortes, Fernando, et al. "A family of hyperbolic-type control schemes for robot manipulators." Kybernetika 55.3 (2019): 561-585. <http://eudml.org/doc/294295>.

@article{Reyes2019,
abstract = {This paper deals with the global position control problem of robot manipulators in joint space, a new family of control schemes consisting of a suitable combination of hyperbolic functions is presented. The proposed control family includes a large class of bounded hyperbolic-type control schemes to drive both position error and derivative action terms plus gravity compensation. To ensure global asymptotic stability of closed-loop system equilibrium point, we propose an energy-shaping based strict Lyapunov function. To verify the efficiency of the proposed control algorithm, an experimental comparative analysis between the well known unbounded linear PD control and three hyperbolic-type control schemes of the proposed family on a three degrees of freedom direct-drive robot manipulator is analysed.},
author = {Reyes-Cortes, Fernando, Felix-Beltran, Olga, Cid-Monjaraz, Jaime, Alonso-Aruffo, Gweni},
journal = {Kybernetika},
keywords = {Lyapunov stability; control; robot-manipulator; regulation},
language = {eng},
number = {3},
pages = {561-585},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A family of hyperbolic-type control schemes for robot manipulators},
url = {http://eudml.org/doc/294295},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Reyes-Cortes, Fernando
AU - Felix-Beltran, Olga
AU - Cid-Monjaraz, Jaime
AU - Alonso-Aruffo, Gweni
TI - A family of hyperbolic-type control schemes for robot manipulators
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 561
EP - 585
AB - This paper deals with the global position control problem of robot manipulators in joint space, a new family of control schemes consisting of a suitable combination of hyperbolic functions is presented. The proposed control family includes a large class of bounded hyperbolic-type control schemes to drive both position error and derivative action terms plus gravity compensation. To ensure global asymptotic stability of closed-loop system equilibrium point, we propose an energy-shaping based strict Lyapunov function. To verify the efficiency of the proposed control algorithm, an experimental comparative analysis between the well known unbounded linear PD control and three hyperbolic-type control schemes of the proposed family on a three degrees of freedom direct-drive robot manipulator is analysed.
LA - eng
KW - Lyapunov stability; control; robot-manipulator; regulation
UR - http://eudml.org/doc/294295
ER -

References

top
  1. Zavala, E. Aguiñaga. A., Santibañez, V., Reyes, F., 10.1109/tcst.2009.2013938, IEEE Trans. Control Systems Technol. 17 (2009), 4, 934-944. MR2830143DOI10.1109/tcst.2009.2013938
  2. Caverly, R. J., Zlotink, D. E., Bridgeman, L. J., Fobres, J. R., 10.1016/j.rcim.2014.06.001, Robotics computer-Integrated Manufact. 30 (2014), 658-666. DOI10.1016/j.rcim.2014.06.001
  3. Caverly, R. J., Zlotink, D. E., Forbes, J. R., 10.1017/s0263574714002343, Robotica 34 (2014), 1367-1382. DOI10.1017/s0263574714002343
  4. Chavez-Olivares, C., Reyes-Cortes, F., Gonzalez-Galvan, E., Mendoza-Gutierrez, M., Bonilla-Gutierrez, I., 10.5772/52190, Int. J. Advanced Robotic Systems 9 (2012), 4, 1-18. DOI10.5772/52190
  5. Craig, J., Hsu, P., Sastry, S., 10.1177/027836498700600202, Int. J. Robotics Research 6 (1987), 2, 16-28. DOI10.1177/027836498700600202
  6. Petre, A. del, 10.1109/lra.2017.2738321, IEEE Robotics Automat. Lett. 3 (2018), 1, 281-288. DOI10.1109/lra.2017.2738321
  7. Fischer, N., Dani, A., Sharma, N., Dixon, W., 10.1016/j.automatica.2013.02.013, Automatica 49 (2013), 1741-1747. MR3049222DOI10.1016/j.automatica.2013.02.013
  8. Fischer, N., Kan, Z., Kamalapurkar, R., Dixon, W., 10.1109/tac.2013.2286913, IEEE Trans. Automat. Control 59 (2014), 4, 1094-1099. MR3199364DOI10.1109/tac.2013.2286913
  9. Izadbakhsh, A., Kheirkhahan, P., 10.1109/icit.2018.8352185, In: 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon 2018, pp. 250-255. MR3511400DOI10.1109/icit.2018.8352185
  10. Izadbakhsh, A., Fateh, M. M., 10.1007/s11071-014-1574-z, Nonlinear Dynamics, Springer 78 (2014) 3, 1999-2014. DOI10.1007/s11071-014-1574-z
  11. Izadbakhsh, A., Kheirkhahan, P., 10.1007/s12555-017-0035-0, Int. J. Control, Automat. Systems 16 (2018), 4, 1887-1894. DOI10.1007/s12555-017-0035-0
  12. Kelly, R., Santibañez, V., 10.1109/9.720506, IEEE Trans. Automat. Control 43 (1998), 10, 1451-1456. MR1646672DOI10.1109/9.720506
  13. Kelly, R., Santibañez, V., Loria, A., 10.1002/rnc.1114, Springer, 2005. MR1997825DOI10.1002/rnc.1114
  14. Lopez, D., Loria, A., Zavala, A., 10.1002/acs.2697, Int. J. Adaptive Control Signal Process. 31 (2017), 299-313. MR3623539DOI10.1002/acs.2697
  15. Mendoza, M., Bonilla, I., Reyes, F., Gonzalez-Galvan, E., A Lyapunov-based design tool of impedance controllers for robot manipulators., Kybernetika 48 (2012), 6, 1136-1155. MR3052878
  16. Mendoza, M., Zavala-Rao, A., Santibanez, V., Reyes, F., 10.1049/iet-cta.2014.0680, IET Control Theory Appl. Inst. Engrg. Technol. 10000 (2015), 1-10. MR3410788DOI10.1049/iet-cta.2014.0680
  17. Moreno, J., Santibañez, V., 10.1002/asjc.586, Asian J. Control 15 (2013), 1, 64-79. MR3015759DOI10.1002/asjc.586
  18. Orrante, J., Santibañez, V., Hernandez, M., 10.1017/s0263574714001131, Robotica 33 (2015), 4, 1926-1947. DOI10.1017/s0263574714001131
  19. Ramirez, J. A., Santibañez, V., Campa, R., 10.1109/tcst.2008.917875, IEEE Trans. Control Systems Technol. 16 (2008), 6, 1333-1341. DOI10.1109/tcst.2008.917875
  20. Reyes, F., Cid, J., Limon, M. A., Cervantes, M., 10.5772/52500, Int. J. Advanced Robotic Systems 10 (2013), 39, 1-7. DOI10.5772/52500
  21. Rodriguez, M. C., Bonilla, I., Mendoza, M., Chavez, C., 10.1515/amcs-2017-0006, Int. J. Appl. Math. Computer Sci. 27 (2017), 1, 79-90. MR3676816DOI10.1515/amcs-2017-0006
  22. Romero, J. G., Ortega, R., Donaire, A., 10.1016/j.sysconle.2013.05.011, Systems Control Lett. 62 (2016), 770-780. MR3080470DOI10.1016/j.sysconle.2013.05.011
  23. Santibañez, V., Kelly, R., Reyes, F., 10.1109/41.661313, IEEE Trans. Industr. Electron. 45 (1998), 1, 126-133. DOI10.1109/41.661313
  24. Santibañez, V., Kelly, R., Llama, M. A., 10.1109/tfuzz.2004.841735, IEEE Trans. Fuzzy Systems 13 (2005), 3, 362-372. DOI10.1109/tfuzz.2004.841735
  25. Shojaei, K., Chatraei, A., 10.1002/asjc.1115, Asian J. Control 17 (2015), 6, 2175-2187. MR3418383DOI10.1002/asjc.1115
  26. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G., Robotics: Modelling, Planning and Control., Springer Publishing Company, Incorporated, 2010. 
  27. Siciliano, B., Kathib, O., 10.1007/978-3-319-32552-1_1, Springer, 2016. DOI10.1007/978-3-319-32552-1_1
  28. Spong, M. W., Hutchinson, S., Vidyasagar, M., 10.1108/ir.2006.33.5.403.1, John Wiley and Sons, Inc., 2006. DOI10.1108/ir.2006.33.5.403.1
  29. Su, Y., Muller, P. C., Zheng, C., 10.1109/tcst.2009.2035924, IEEE Trans. Control Systems Technol. 18 (2010), 6, 1280-1288. DOI10.1109/tcst.2009.2035924
  30. Sun, D., Hu, S., Shao, X., Liu, C., 10.1109/tcst.2008.2011748, IEEE Trans. Control Systems Technol. 17 (2009), 4, 892-899. MR1214267DOI10.1109/tcst.2008.2011748
  31. Takegaki, M., Arimoto, S., 10.1115/1.3139651, ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125. Zbl0473.93012DOI10.1115/1.3139651
  32. Yarza, A., Santibañez, V., Moreno, J., 10.5772/45688, Int. J. Advanced Robotic Systems 8 (2011), 4, 34-42. DOI10.5772/45688
  33. Zavala, A., Mendoza, M., Santibañez, V., Reyes, F., 10.1177/1729881416663368, Int. J. Advanced Robotic Systems 6 (2016), 1-12. MR3410788DOI10.1177/1729881416663368
  34. Zelei, A., Bencsik, L., Stepan, G., 10.1115/1.4034868, J. Computat. Nonlinear Dynamics 12 (2016), 3, 031011-031015. DOI10.1115/1.4034868

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.