A Lyapunov-based design tool of impedance controllers for robot manipulators
Marco Mendoza; Isela Bonilla; Fernando Reyes; Emilio González-Galván
Kybernetika (2012)
- Volume: 48, Issue: 6, page 1136-1155
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMendoza, Marco, et al. "A Lyapunov-based design tool of impedance controllers for robot manipulators." Kybernetika 48.6 (2012): 1136-1155. <http://eudml.org/doc/251405>.
@article{Mendoza2012,
abstract = {This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.},
author = {Mendoza, Marco, Bonilla, Isela, Reyes, Fernando, González-Galván, Emilio},
journal = {Kybernetika},
keywords = {impedance control; Lyapunov stability; robot manipulator; impedance control; Lyapunov stability; robot manipulator},
language = {eng},
number = {6},
pages = {1136-1155},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A Lyapunov-based design tool of impedance controllers for robot manipulators},
url = {http://eudml.org/doc/251405},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Mendoza, Marco
AU - Bonilla, Isela
AU - Reyes, Fernando
AU - González-Galván, Emilio
TI - A Lyapunov-based design tool of impedance controllers for robot manipulators
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 6
SP - 1136
EP - 1155
AB - This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.
LA - eng
KW - impedance control; Lyapunov stability; robot manipulator; impedance control; Lyapunov stability; robot manipulator
UR - http://eudml.org/doc/251405
ER -
References
top- Anderson, R., Spong, M., 10.1109/56.20440, IEEE Trans. Robotic. Autom. 4 (1988), 5, 549-556. DOI10.1109/56.20440
- Canudas, C., Siciliano, B., Bastin, G., Theory of Robot Control., Springer-Verlag, 1996.
- Carelli, R., Kelly, R., 10.1109/9.133190, IEEE Trans. Automat. Control 36 (1991), 8, 967-971. Zbl0737.93050MR1116453DOI10.1109/9.133190
- Chiaverini, S., Siciliano, B., Villani, L., 10.1109/3516.789685, IEEE-ASME Trans. Mech. 4 (1999), 273-285. DOI10.1109/3516.789685
- González, J., Widmann, G., 10.1109/87.481964, IEEE Trans. Control Syst. Theory 3 (1995), 4, 398-408. DOI10.1109/87.481964
- Hagn, U., Ortmaier, T., Konietschke, R., Kuebler, B., Seibold, U., Tobergte, A., Nickl, M., Joerg, S., Hirzinger, G., 10.1109/MRA.2008.929925, IEEE Robot. Automat. Magazine 15 (2008), 4, 28-38. DOI10.1109/MRA.2008.929925
- Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A., Konietschke, R., Grebenstein, M., Warpup, R., Haslinger, R., Frommberger, M., Hirzinger, G., 10.1108/01439910810876427, Ind. Robot 35 (2008), 4, 324-336. DOI10.1108/01439910810876427
- Hogan, N., 10.1115/1.3140702, J. Dyn. Syst-T ASME 107 (1985), 1-24. DOI10.1115/1.3140702
- Hoon-Kang, S., Jin, M., Hun-Chang, P., 10.1109/TMECH.2008.2005524, IEEE-ASME Trans. Mech. 14 (2009), 3, 282-294. DOI10.1109/TMECH.2008.2005524
- Horn, R., Johnson, C., Matrix Analysis., Cambridge University Press, New York 1985. Zbl0801.15001MR0832183
- Jager, A. de, Banens, J., Experimental evaluation of robot controllers., In: Proc. 33rd Conf. Decision Control, Lake Buena Vista 1994, pp. 363-368.
- Jaritz, A., Spong, M. W., 10.1109/87.541692, IEEE Trans. Control Syst. Theory 4 (1996), 627-640. DOI10.1109/87.541692
- Kazerooni, H., Robust nonlinear impedance control for robot manipulators., In: Proc. IEEE Int. Conf. Robotic. Autom. 1987, pp. 741-750.
- Kim, K., Hori, Y., 10.1109/41.475506, IEEE Trans. Ind. Electron. 42 (1995), 653-662. DOI10.1109/41.475506
- Krebs, H. I., Ferraro, M., P, S., Buerger, Newbery, M. J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T., Hogan, N., 10.1186/1743-0003-1-5, J. Neuroeng. Rehabil. 1 (2004), 5. DOI10.1186/1743-0003-1-5
- Krebs, H. I., Volpe, B. T., L, M., Aisen, Hening, W., Adamovich, S., Poizner, H., Subrahmanyan, K., Hogan, N., 10.1017/S0263574702004587, Robotica 21 (2003), 3-11. DOI10.1017/S0263574702004587
- Lippiello, V., Siciliano, B., Villani, L., Robot interaction control using force and vision., In: Proc. IEEE-RSJ Int. Conf. Robot. Syst., 2006, pp. 1470-1475. Zbl1118.93337
- Lippiello, V., Siciliano, B., Villani, L., A position-based visual impedance control for robot manipulators., In: Proc. IEEE Int. Conf. Robotic. Autom., Roma 2007, pp. 2068-2073.
- Marchal-Crespo, L., Reinkensmeyer, D. J., 10.1186/1743-0003-6-20, J. Neuroeng. Rehabil. 6 (2009), 20. DOI10.1186/1743-0003-6-20
- McCormick, W., Schwartz, H., 10.1177/027836499301200507, Internat. J. Robot. Res. 12 (1993), 5, 473-489. DOI10.1177/027836499301200507
- Okamura, A. M., 10.1108/01439910410566362, Ind. Robot 31(6) (2004), 499-508. DOI10.1108/01439910410566362
- Raibert, M., Craig, J., 10.1115/1.3139652, J. Dyn. Syst-T ASME 102 (1981), 126-133. DOI10.1115/1.3139652
- Reyes, F., Kelly, R., 10.1017/S0263574797000659, Robotica 15 (1997), 563-571. DOI10.1017/S0263574797000659
- Sciavicco, L., Siciliano, B., Modeling and Control of Robot Manipulators., McGraw-Hill, New York 1996.
- Siciliano, B., Villani, L., Robot Force Control., Kluwer Academic Publishers, Boston 1999. Zbl0940.93006
- Spong, M. W., Vidyasagar, M., Robots Dynamics and Control., John Wiley and Sons, New York 1989.
- Takegaki, M., Arimoto, S., 10.1115/1.3139651, J. Dyn. Syst-T ASME 102 (1981), 119-125. Zbl0473.93012DOI10.1115/1.3139651
- Tsoi, Y. H., Xie, S. Q., Impedance control of ankle rehabilitation robot., In: Proc. IEEE Int. Conf. Robotic. Bio., Bangkok 2009.
- Whitcomb, L., Rizzi, A., Koditschek, D. E., 10.1109/70.210795, IEEE Trans. Robotic. Autom. 9 (1993), 59-70. DOI10.1109/70.210795
- Whitney, D., Historical perspective and state of the art in robot force control., In: Proc. IEEE Int. Conf. Robotic. Autom. 1985, pp. 262-268.
Citations in EuDML Documents
top- Fernando Reyes-Cortes, Olga Felix-Beltran, Jaime Cid-Monjaraz, Gweni Alonso-Aruffo, A family of hyperbolic-type control schemes for robot manipulators
- Ou Meiying, Sun Haibin, Zhang Zhenxing, Li Lingchun, Wang Xiang-ao, Fixed-time tracking control for nonholonomic mobile robot
- María del Carmen Rodríguez-Liñán, Marco Mendoza, Isela Bonilla, César A. Chávez-Olivares, Saturating stiffness control of robot manipulators with bounded inputs
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.