A Lyapunov-based design tool of impedance controllers for robot manipulators

Marco Mendoza; Isela Bonilla; Fernando Reyes; Emilio González-Galván

Kybernetika (2012)

  • Volume: 48, Issue: 6, page 1136-1155
  • ISSN: 0023-5954

Abstract

top
This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.

How to cite

top

Mendoza, Marco, et al. "A Lyapunov-based design tool of impedance controllers for robot manipulators." Kybernetika 48.6 (2012): 1136-1155. <http://eudml.org/doc/251405>.

@article{Mendoza2012,
abstract = {This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.},
author = {Mendoza, Marco, Bonilla, Isela, Reyes, Fernando, González-Galván, Emilio},
journal = {Kybernetika},
keywords = {impedance control; Lyapunov stability; robot manipulator; impedance control; Lyapunov stability; robot manipulator},
language = {eng},
number = {6},
pages = {1136-1155},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A Lyapunov-based design tool of impedance controllers for robot manipulators},
url = {http://eudml.org/doc/251405},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Mendoza, Marco
AU - Bonilla, Isela
AU - Reyes, Fernando
AU - González-Galván, Emilio
TI - A Lyapunov-based design tool of impedance controllers for robot manipulators
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 6
SP - 1136
EP - 1155
AB - This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.
LA - eng
KW - impedance control; Lyapunov stability; robot manipulator; impedance control; Lyapunov stability; robot manipulator
UR - http://eudml.org/doc/251405
ER -

References

top
  1. Anderson, R., Spong, M., 10.1109/56.20440, IEEE Trans. Robotic. Autom. 4 (1988), 5, 549-556. DOI10.1109/56.20440
  2. Canudas, C., Siciliano, B., Bastin, G., Theory of Robot Control., Springer-Verlag, 1996. 
  3. Carelli, R., Kelly, R., 10.1109/9.133190, IEEE Trans. Automat. Control 36 (1991), 8, 967-971. Zbl0737.93050MR1116453DOI10.1109/9.133190
  4. Chiaverini, S., Siciliano, B., Villani, L., 10.1109/3516.789685, IEEE-ASME Trans. Mech. 4 (1999), 273-285. DOI10.1109/3516.789685
  5. González, J., Widmann, G., 10.1109/87.481964, IEEE Trans. Control Syst. Theory 3 (1995), 4, 398-408. DOI10.1109/87.481964
  6. Hagn, U., Ortmaier, T., Konietschke, R., Kuebler, B., Seibold, U., Tobergte, A., Nickl, M., Joerg, S., Hirzinger, G., 10.1109/MRA.2008.929925, IEEE Robot. Automat. Magazine 15 (2008), 4, 28-38. DOI10.1109/MRA.2008.929925
  7. Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A., Konietschke, R., Grebenstein, M., Warpup, R., Haslinger, R., Frommberger, M., Hirzinger, G., 10.1108/01439910810876427, Ind. Robot 35 (2008), 4, 324-336. DOI10.1108/01439910810876427
  8. Hogan, N., 10.1115/1.3140702, J. Dyn. Syst-T ASME 107 (1985), 1-24. DOI10.1115/1.3140702
  9. Hoon-Kang, S., Jin, M., Hun-Chang, P., 10.1109/TMECH.2008.2005524, IEEE-ASME Trans. Mech. 14 (2009), 3, 282-294. DOI10.1109/TMECH.2008.2005524
  10. Horn, R., Johnson, C., Matrix Analysis., Cambridge University Press, New York 1985. Zbl0801.15001MR0832183
  11. Jager, A. de, Banens, J., Experimental evaluation of robot controllers., In: Proc. 33rd Conf. Decision Control, Lake Buena Vista 1994, pp. 363-368. 
  12. Jaritz, A., Spong, M. W., 10.1109/87.541692, IEEE Trans. Control Syst. Theory 4 (1996), 627-640. DOI10.1109/87.541692
  13. Kazerooni, H., Robust nonlinear impedance control for robot manipulators., In: Proc. IEEE Int. Conf. Robotic. Autom. 1987, pp. 741-750. 
  14. Kim, K., Hori, Y., 10.1109/41.475506, IEEE Trans. Ind. Electron. 42 (1995), 653-662. DOI10.1109/41.475506
  15. Krebs, H. I., Ferraro, M., P, S., Buerger, Newbery, M. J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T., Hogan, N., 10.1186/1743-0003-1-5, J. Neuroeng. Rehabil. 1 (2004), 5. DOI10.1186/1743-0003-1-5
  16. Krebs, H. I., Volpe, B. T., L, M., Aisen, Hening, W., Adamovich, S., Poizner, H., Subrahmanyan, K., Hogan, N., 10.1017/S0263574702004587, Robotica 21 (2003), 3-11. DOI10.1017/S0263574702004587
  17. Lippiello, V., Siciliano, B., Villani, L., Robot interaction control using force and vision., In: Proc. IEEE-RSJ Int. Conf. Robot. Syst., 2006, pp. 1470-1475. Zbl1118.93337
  18. Lippiello, V., Siciliano, B., Villani, L., A position-based visual impedance control for robot manipulators., In: Proc. IEEE Int. Conf. Robotic. Autom., Roma 2007, pp. 2068-2073. 
  19. Marchal-Crespo, L., Reinkensmeyer, D. J., 10.1186/1743-0003-6-20, J. Neuroeng. Rehabil. 6 (2009), 20. DOI10.1186/1743-0003-6-20
  20. McCormick, W., Schwartz, H., 10.1177/027836499301200507, Internat. J. Robot. Res. 12 (1993), 5, 473-489. DOI10.1177/027836499301200507
  21. Okamura, A. M., 10.1108/01439910410566362, Ind. Robot 31(6) (2004), 499-508. DOI10.1108/01439910410566362
  22. Raibert, M., Craig, J., 10.1115/1.3139652, J. Dyn. Syst-T ASME 102 (1981), 126-133. DOI10.1115/1.3139652
  23. Reyes, F., Kelly, R., 10.1017/S0263574797000659, Robotica 15 (1997), 563-571. DOI10.1017/S0263574797000659
  24. Sciavicco, L., Siciliano, B., Modeling and Control of Robot Manipulators., McGraw-Hill, New York 1996. 
  25. Siciliano, B., Villani, L., Robot Force Control., Kluwer Academic Publishers, Boston 1999. Zbl0940.93006
  26. Spong, M. W., Vidyasagar, M., Robots Dynamics and Control., John Wiley and Sons, New York 1989. 
  27. Takegaki, M., Arimoto, S., 10.1115/1.3139651, J. Dyn. Syst-T ASME 102 (1981), 119-125. Zbl0473.93012DOI10.1115/1.3139651
  28. Tsoi, Y. H., Xie, S. Q., Impedance control of ankle rehabilitation robot., In: Proc. IEEE Int. Conf. Robotic. Bio., Bangkok 2009. 
  29. Whitcomb, L., Rizzi, A., Koditschek, D. E., 10.1109/70.210795, IEEE Trans. Robotic. Autom. 9 (1993), 59-70. DOI10.1109/70.210795
  30. Whitney, D., Historical perspective and state of the art in robot force control., In: Proc. IEEE Int. Conf. Robotic. Autom. 1985, pp. 262-268. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.