The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Goldie extending elements in modular lattices”

Direct summands of Goldie extending elements in modular lattices

Rupal Shroff (2022)

Mathematica Bohemica

Similarity:

In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.

Construction of uninorms on bounded lattices

Gül Deniz Çaylı, Funda Karaçal (2017)

Kybernetika

Similarity:

In this paper, we propose the general methods, yielding uninorms on the bounded lattice ( L , , 0 , 1 ) , with some additional constraints on e L { 0 , 1 } for a fixed neutral element e L { 0 , 1 } based on underlying an arbitrary triangular norm T e on [ 0 , e ] and an arbitrary triangular conorm S e on [ e , 1 ] . And, some illustrative examples are added for clarity.

Modular lattices from finite projective planes

Tathagata Basak (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Using the geometry of the projective plane over the finite field 𝔽 q , we construct a Hermitian Lorentzian lattice L q of dimension ( q 2 + q + 2 ) defined over a certain number ring 𝒪 that depends on q . We show that infinitely many of these lattices are p -modular, that is, p L q ' = L q , where p is some prime in 𝒪 such that | p | 2 = q . The Lorentzian lattices L q sometimes lead to construction of interesting positive definite lattices. In particular, if q 3 mod 4 is a rational prime such that ( q 2 + q + 1 ) is norm of some element in...

Orthogonality and complementation in the lattice of subspaces of a finite vector space

Ivan Chajda, Helmut Länger (2022)

Mathematica Bohemica

Similarity:

We investigate the lattice 𝐋 ( 𝐕 ) of subspaces of an m -dimensional vector space 𝐕 over a finite field GF ( q ) with a prime power q = p n together with the unary operation of orthogonality. It is well-known that this lattice is modular and that the orthogonality is an antitone involution. The lattice 𝐋 ( 𝐕 ) satisfies the chain condition and we determine the number of covers of its elements, especially the number of its atoms. We characterize when orthogonality is a complementation and hence when 𝐋 ( 𝐕 ) is orthomodular....

Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices

Gábor Czédli (2024)

Mathematica Bohemica

Similarity:

Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no M 3 as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset P is said to be JConSPS-representable if there is an SPS lattice L such that P is isomorphic to the poset J ( Con L ) of join-irreducible congruences of L . We prove that...

Sufficient conditions for a T-partial order obtained from triangular norms to be a lattice

Lifeng Li, Jianke Zhang, Chang Zhou (2019)

Kybernetika

Similarity:

For a t-norm T on a bounded lattice ( L , ) , a partial order T was recently defined and studied. In [11], it was pointed out that the binary relation T is a partial order on L , but ( L , T ) may not be a lattice in general. In this paper, several sufficient conditions under which ( L , T ) is a lattice are given, as an answer to an open problem posed by the authors of [11]. Furthermore, some examples of t-norms on L such that ( L , T ) is a lattice are presented.

A new approach to construct uninorms via uninorms on bounded lattices

Zhen-Yu Xiu, Xu Zheng (2024)

Kybernetika

Similarity:

In this paper, on a bounded lattice L , we give a new approach to construct uninorms via a given uninorm U * on the subinterval [ 0 , a ] (or [ b , 1 ] ) of L under additional constraint conditions on L and U * . This approach makes our methods generalize some known construction methods for uninorms in the literature. Meanwhile, some illustrative examples for the construction of uninorms on bounded lattices are provided.

A localization property for B p q s and F p q s spaces

Hans Triebel (1994)

Studia Mathematica

Similarity:

Let f j = k a k f ( 2 j + 1 x - 2 k ) , where the sum is taken over the lattice of all points k in n having integer-valued components, j∈ℕ and a k . Let A p q s be either B p q s or F p q s (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on n . The aim of the paper is to clarify under what conditions f j | A p q s is equivalent to 2 j ( s - n / p ) ( k | a k | p ) 1 / p f | A p q s .

Quasicontinuous spaces

Jing Lu, Bin Zhao, Kaiyun Wang, Dong Sheng Zhao (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A T 0 space ( X , τ ) is a quasicontinuous space if and only if S I ( X ) is locally hypercompact if and only if ( τ S I , ) is a hypercontinuous lattice; (2) a T 0 space X is an S I -continuous space if and only if X is a meet continuous and quasicontinuous space; (3) if a C -space X is a well-filtered poset under its specialization order, then X is a quasicontinuous...

The module of vector-valued modular forms is Cohen-Macaulay

Richard Gottesman (2020)

Czechoslovak Mathematical Journal

Similarity:

Let H denote a finite index subgroup of the modular group Γ and let ρ denote a finite-dimensional complex representation of H . Let M ( ρ ) denote the collection of holomorphic vector-valued modular forms for ρ and let M ( H ) denote the collection of modular forms on H . Then M ( ρ ) is a -graded M ( H ) -module. It has been proven that M ( ρ ) may not be projective as a M ( H ) -module. We prove that M ( ρ ) is Cohen-Macaulay as a M ( H ) -module. We also explain how to apply this result to prove that if M ( H ) is a polynomial ring, then...

Wallman-type compaerifications and function lattices

Alessandro Caterino, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Let F C ( X ) be a vector sublattice over which separates points from closed sets of X . The compactification e F X obtained by embedding X in a real cube via the diagonal map, is different, in general, from the Wallman compactification ω ( Z ( F ) ) . In this paper, it is shown that there exists a lattice F z containing F such that ω ( Z ( F ) ) = ω ( Z ( F z ) ) = e F X . In particular this implies that ω ( Z ( F ) ) e F X . Conditions in order to be ω ( Z ( F ) ) = e F X are given. Finally we prove that, if α X is a compactification of X such that C l α X ( α X X ) is 0 -dimensional, then there is an...

Explicit construction of normal lattice configurations

Mordechay B. Levin, Meir Smorodinsky (2005)

Colloquium Mathematicae

Similarity:

We extend Champernowne’s construction of normal numbers to base b to the d case and obtain an explicit construction of a generic point of the d shift transformation of the set 0 , 1 , . . . , b - 1 d .

Cambrian fans

Nathan Reading, David E. Speyer (2009)

Journal of the European Mathematical Society

Similarity:

For a finite Coxeter group W and a Coxeter element c of W ; the c -Cambrian fan is a coarsening of the fan defined by the reflecting hyperplanes of W . Its maximal cones are naturally indexed by the c -sortable elements of W . The main result of this paper is that the known bijection cl c between c -sortable elements and c -clusters induces a combinatorial isomorphism of fans. In particular, the c -Cambrian fan is combinatorially isomorphic to the normal fan of the generalized associahedron for...